J.M.D. Coey, Permanent magnet applications. J. Magn. Magn. Mater. 248, 441–456 (2002). https://doi.org/10.1016/S0304-8853(02)00335-9
Article
CAS
Google Scholar
O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv Mater (Deerfield Beach, Fla.) 23, 821–842 (2011). https://doi.org/10.1002/adma.201002180
Article
CAS
Google Scholar
J. Fischbacher, A. Kovacs, M. Gusenbauer, H. Oezelt, L. Exl, S. Bance, T. Schrefl, Micromagnetics of rare-earth efficient permanent magnets. J. Phys. D. Appl. Phys. 51, 193002 (2018). https://doi.org/10.1088/1361-6463/aab7d1
Article
CAS
Google Scholar
O. Gutfleisch, Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D. Appl. Phys. 33, R157–R172 (2000). https://doi.org/10.1088/0022-3727/33/17/201
Article
CAS
Google Scholar
M. Duerrschnabel, M. Yi, K. Uestuener, M. Liesegang, M. Katter, H.-J. Kleebe, B. Xu, O. Gutfleisch, L. Molina-Luna, Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat. Commun. 8, 54 (2017). https://doi.org/10.1038/s41467-017-00059-9
Article
CAS
Google Scholar
W. Rodewald, B. Wall, M. Katter, K. Uestuener, Top Nd-Fe-B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity. IEEE Trans. Magn. 38, 2955–2957 (2002). https://doi.org/10.1109/TMAG.2002.803075
Article
CAS
Google Scholar
M. Liesegang, R. Regnat, K. Uestuener, F.-J. Boergermann, M. Katter, Influence of the Sample Position on the Measured Magnetic Flux in Helmholtz Coils Biased with Halbach Array Systems, International Workshop on Rare-Earth and Future Permanent Magnets and their Applications, Darmstadt (2016)
Google Scholar
M. Haavisto, S. Tuominen, T. Santa-Nokki, H. Kankaanpää, M. Paju, P. Ruuskanen, Magnetic behavior of sintered NdFeB magnets on a long-term timescale. Adv. Mater. Sci. Eng. 2014, 1–7 (2014). https://doi.org/10.1155/2014/760584
Article
CAS
Google Scholar
R.S. Popovic, J.A. Flanagan, P.A. Besse, The future of magnetic sensors. Sensors Actuators A Phys. 56, 39–55 (1996). https://doi.org/10.1016/0924-4247(96)01285-X
Article
CAS
Google Scholar
B. Chang, S. Bai, D. Du, H. Zhang, Y. Zhou, Studies on the micro-laser spot welding of an NdFeB permanent magnet with a low carbon steel. J. Mater. Process. Technol. 210, 885–891 (2010). https://doi.org/10.1016/j.jmatprotec.2010.01.021
Article
CAS
Google Scholar
S.K. Gharghan, R. Nordin, M. Ismail, Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring. Sensors (Basel, Switzerland) 14, 15573–15592 (2014). https://doi.org/10.3390/s140815573
Article
Google Scholar
C. Schott, R. Racz, F. Betschart, R.S. Popovic, in Proceedings of IEEE Sensors, IEEE. A new two-axis magnetic position sensor (2002), pp. 911–915
Chapter
Google Scholar
H. Raich, P. Blümler, Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas. Concepts Magn. Reson. Part B: Magn. Reson. Eng. 23B(1), 16–25 (2004). https://doi.org/10.1002/CMR.B.20018
Article
Google Scholar
K.S. Cho, Viscoelasticity of Polymers: Theory and Numerical Algorithms, 1st edn. (Springer Netherlands, Dordrecht, s.l., 2016)
Book
Google Scholar
C.-W. Feng, C.-W. Keong, Y.-P. Hsueh, Y.-Y. Wang, H.-J. Sue, Modeling of long-term creep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes. 25, 427–436 (2005). https://doi.org/10.1016/j.ijadhadh.2004.11.009
Article
CAS
Google Scholar
W. Xi, W. Liu, R. Hu, Y. Yin, M. Yue, Property enhancement of bonded Nd-Fe-B magnets by composite adhesive design. Mater. Des. 192, 108767 (2020). https://doi.org/10.1016/j.matdes.2020.108767
Article
CAS
Google Scholar
I.F. Villegas, Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters. Compos. A: Appl. Sci. Manuf. 65, 27–37 (2014). https://doi.org/10.1016/j.compositesa.2014.05.019
Article
CAS
Google Scholar
G. Harman, J. Albers, The ultrasonic welding mechanism as applied to aluminum-and gold-wire bonding in microelectronics. IEEE Trans. Parts, Hybrids, Packag. 13, 406–412 (1977). https://doi.org/10.1109/TPHP.1977.1135225
Article
Google Scholar
F. Staab, F. Balle, Ultrasonic torsion welding of ageing-resistant Al/CFRP joints: Properties, microstructure and joint formation. Ultrasonics 93, 139–144 (2019). https://doi.org/10.1016/j.ultras.2018.11.006
Article
CAS
Google Scholar
F. Balle, G. Wagner, D. Eifler, Ultrasonic metal welding of Aluminium sheets to carbon fibre reinforced thermoplastic composites. Adv. Eng. Mater. 11, 35–39 (2009). https://doi.org/10.1002/adem.200800271
Article
CAS
Google Scholar
F. Balle, D. Eifler, Statistical test planning for ultrasonic welding of dissimilar materials using the example of aluminum-carbon fiber reinforced polymers (CFRP) joints. Mat.-wiss. u. Werkstofftech 43, 286–292 (2012). https://doi.org/10.1002/mawe.201200943
Article
CAS
Google Scholar
F. Staab, M. Liesegang, F. Balle, Local shear strength distribution of ultrasonically welded hybrid Aluminium to CFRP joints. Compos. Struct. 248, 112481 (2020). https://doi.org/10.1016/j.compstruct.2020.112481
Article
Google Scholar
J. Magin, F. Balle, Solid state joining of aluminum, titanium and their hybrids by ultrasonic torsion welding. Mat.-wiss. u. Werkstofftech 45, 1072–1083 (2014). https://doi.org/10.1002/mawe.201400355
Article
CAS
Google Scholar
H.T. Fujii, Y. Goto, Y.S. Sato, H. Kokawa, Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel. Scr. Mater. 116, 135–138 (2016). https://doi.org/10.1016/j.scriptamat.2016.02.004
Article
CAS
Google Scholar
S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman, S.S. Babu, Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061. Acta Mater. 74, 234–243 (2014). https://doi.org/10.1016/j.actamat.2014.04.043
Article
CAS
Google Scholar
T. Watanabe, H. Sakuyama, A. Yanagisawa, Ultrasonic welding between mild steel sheet and Al–mg alloy sheet. J. Mater. Process. Technol. 209, 5475–5480 (2009). https://doi.org/10.1016/j.jmatprotec.2009.05.006
Article
CAS
Google Scholar
V.K. Patel, S.D. Bhole, D.L. Chen, Ultrasonic spot welded AZ31 magnesium alloy: Microstructure, texture, and lap shear strength. Mater. Sci. Eng. A 569, 78–85 (2013). https://doi.org/10.1016/j.msea.2013.01.042
Article
CAS
Google Scholar
A. Panteli, J.D. Robson, I. Brough, P.B. Prangnell, The effect of high strain rate deformation on intermetallic reaction during ultrasonic welding aluminium to magnesium. Mater. Sci. Eng. A 556, 31–42 (2012). https://doi.org/10.1016/j.msea.2012.06.055
Article
CAS
Google Scholar
C. Born, H. Kuckert, G. Wagner, D. Eifler, Ultrasonic torsion welding of sheet metals to cellular metallic materials. Adv. Eng. Mater. 5, 779–786 (2003). https://doi.org/10.1002/adem.200310102
Article
CAS
Google Scholar
H. Kuckert, C. Born, G. Wagner, D. Eifler, Helium-tight sealing of glass with metal by ultrasonic welding. Adv. Eng. Mater. 3, 903 (2001). https://doi.org/10.1002/1527-2648(200111)3:11<903:AID-ADEM903>3.0.CO;2-O
Article
CAS
Google Scholar
B. Harras, K.C. Cole, T. Vu-Khanh, Optimization of the ultrasonic welding of PEEK-carbon composites. J. Reinf. Plast. Compos. 15, 174–182 (1996). https://doi.org/10.1177/073168449601500203
Article
CAS
Google Scholar
U. Khan, N.Z. Khan, J. Gulati, Ultrasonic welding of bi-metals: Optimizing process parameters for maximum tensile-shear strength and plasticity of welds. Procedia Engineering 173, 1447–1454 (2017). https://doi.org/10.1016/j.proeng.2016.12.210
Article
Google Scholar
G. Wagner, F. Balle, D. Eifler, Ultrasonic welding of aluminum alloys to Fiber reinforced polymers. Adv. Eng. Mater. 15, 792–803 (2013). https://doi.org/10.1002/adem.201300043
Article
CAS
Google Scholar
K.F. Graff, Process Applications of Power Ultrasonics - A Review, in: 1974 Ultrasonics Symposium, IEEE, 11.11.1974–14.11 (1974), pp. 628–641
Google Scholar
D. Bakavos, P.B. Prangnell, Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Mater. Sci. Eng. A 527, 6320–6334 (2010). https://doi.org/10.1016/j.msea.2010.06.038
Article
CAS
Google Scholar
M. Maeda, T. Sato, N. Inoue, D. Yagi, Y. Takahashi, Anomalous microstructure formed at the interface between copper ribbon and tin-deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 51, 130–136 (2011). https://doi.org/10.1016/j.microrel.2010.05.009
Article
CAS
Google Scholar
M. Maeda, Y. Takahashi, M. Fukuhara, X. Wang, A. Inoue, Ultrasonic bonding of Zr55Cu30Ni5Al10 metallic glass. Mater. Sci. Eng. B 148, 141–144 (2008). https://doi.org/10.1016/j.mseb.2007.09.028
Article
CAS
Google Scholar
Y.-S. Choi, Y.-H. Yoo, J.-G. Kim, S.-H. Kim, A comparison of the corrosion resistance of cu–Ni–stainless steel multilayers used for EMI shielding. Surf. Coat. Technol. 201, 3775–3782 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.040
Article
CAS
Google Scholar
A. Ali, A. Ahmad, K.M. Deen, Multilayer ceramic coating for impeding corrosion of sintered NdFeB magnets. J. Rare Earths 27, 1003–1007 (2009). https://doi.org/10.1016/S1002-0721(08)60357-9
Article
Google Scholar
G. Design, CES Edupack (2018)
Google Scholar
L. Li, A. Tirado, I.C. Nlebedim, O. Rios, B. Post, V. Kunc, R.R. Lowden, E. Lara-Curzio, R. Fredette, J. Ormerod, T.A. Lograsso, M.P. Paranthaman, Big area additive manufacturing of high performance bonded NdFeB magnets. Sci. Rep. 6, 36212 (2016). https://doi.org/10.1038/srep36212
Article
CAS
Google Scholar
W. Brockmann, Adhesive Bonding: Materials, Applications and Technology (Wiley-VCH, Weinheim, 2009)
Google Scholar
S.L. Raykhere, P. Kumar, R.K. Singh, V. Parameswaran, Dynamic shear strength of adhesive joints made of metallic and composite adherents. Mater. Des. 31, 2102–2109 (2010). https://doi.org/10.1016/j.matdes.2009.10.043
Article
CAS
Google Scholar
M. You, Y. Zheng, X.-L. Zheng, W.-J. Liu, Effect of metal as part of fillet on the tensile shear strength of adhesively bonded single lap joints. Int. J. Adhes. Adhes. 23, 365–369 (2003). https://doi.org/10.1016/S0143-7496(03)00064-2
Article
CAS
Google Scholar