U. Alvarez, C. Granda, R. Santamaria, R. Menendez, New alternatives to graphite for producing graphene materials. Carbon. 93, 812–818 (2015). https://doi.org/10.1016/j.carbon.2015.05.105
Article
CAS
Google Scholar
S.H. Jung, Y. Myung, B.N. Kim, I.G. Kim, I.K. You, T.Y. Kim, Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-20096-8
Z. Gao, Y. Zhang, N. Song, X. Li, Biomass-derived renewable carbon materials for electrochemical energy storage. Mat Res Lett 5, 69–88 (2017). https://doi.org/10.1080/21663831.2016.1250834
Article
CAS
Google Scholar
Q. Ma, Y. Yu, M. Sindoro, A.G. Fane, R. Wang, H. Zhang, Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605361
C.R. Correa, M. Stollovsky, T. Hehr, Y. Rauscher, B. Rolli, A. Kruse, Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustain Chem Eng 5(9), 8222–8233 (2017). https://doi.org/10.1021/acssuschemeng.7b01895
Article
CAS
Google Scholar
L. Guardia, L. Suarez, N. Querejeta, V. Vretenar, P. Kotrusz, V. Skakalova, T. Centeno, Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors. Electrochim. Acta 298, 910–917 (2019). https://doi.org/10.1016/j.electacta.2018.12.160
Article
CAS
Google Scholar
C. Xu, M. Stromme, Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture. Nanomaterials (2019). https://doi.org/10.3390/nano9010103
W. Lan, J.S. Luterbacher, A road to profitability from lignin via the production of bioactive molecules. ACS Cent Sci 5(10), 1642–1644 (2019). https://doi.org/10.1021/acscentsci.9b00954
Article
CAS
Google Scholar
S.P. Leitner, G. Gratzl, C. Paulik, H.K. Weber, Carbon materials from lignin and sodium lignosulfonate via Diisocyanate cross-linking and subsequent carbonization. C. 1(1), 43–57 (2015). https://doi.org/10.3390/c1010043
H. Wikberg, T. Ohra-aho, F. Pileidis, M.M. Titirici, Structural and morphological changes in Kraft lignin during hydrothermal carbonization. ACS Sustain. Chem. Eng. 3(11), 2737–2745 (2015). https://doi.org/10.1021/acssuschemeng.5b00925
Article
CAS
Google Scholar
H. Mao, X. Chen, R. Huang, M. Chen, R. Yang, P. Lan, M. Zhou, F. Zhang, Y. Yang, X. Zhou, Fast preparation of carbon spheres from enzymatic hydrolysis lignin: Effects of hydrothermal carbonization conditions. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-27777-4
D. Saha, Y. Li, Z. Bi, J. Chen, J. Keum, D. Hensley, H. Grappe, H. Meyer, S. Dai, P. Paranthaman, A. Naskar, Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3), 900–910 (2014). https://doi.org/10.1021/la404112m
Article
CAS
Google Scholar
S. Hu, Y.L. Hsieh, Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J. Mater. Chem. A 1, 11279–11288 (2013). https://doi.org/10.1039/C3TA12538F
Article
CAS
Google Scholar
M. Snowdon, A. Mohanty, M. Misra, A study of carbonized lignin as an alternative to carbon black. ACS Sustain. Chem. Eng. 2(5), 1257–1263 (2014). https://doi.org/10.1021/sc500086v
Article
CAS
Google Scholar
C.I. Contescu, S.P. Adhikari, N.C. Gallego, N.D. Evans, B.E. Biss, Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C (2018). https://doi.org/10.3390/c4030051
Book
Google Scholar
D. Wu, H. Xu, M. Hakkarainen, From starch to polylactide and nano-graphene oxide: Fully starch derived high performance composites. RSC Adv. 6, 54336–54345 (2016). https://doi.org/10.1039/C6RA08194K
Article
CAS
Google Scholar
S. Hassanzadeh, N. Aminlashgari, M. Hakkarainen, Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohydr. Polym. 112, 448–457 (2014). https://doi.org/10.1016/j.carbpol.2014.06.011
Article
CAS
Google Scholar
K.H. Adolfsson, S. Hassanzadeh, M. Hakkarainen, Valorization of cellulose and waste paper to graphene oxide quantum dots. RSC Adv. 5, 26550–26558 (2015). https://doi.org/10.1039/C5RA01805F
Article
CAS
Google Scholar
N.B. Erdal, K.H. Adolfsson, T. Pettersson, M. Hakkarainen, Green strategy to reduced Nanographene oxide through microwave assisted transformation of cellulose. ACS Sustain. Chem. Eng. 6, 1246–1255 (2018). https://doi.org/10.1021/acssuschemeng.7b03566
Article
CAS
Google Scholar
S. Kang, X. Li, J. Fan, J. Chang, Classified separation of lignin hydrothermal liquefied products. Ind Eng Chem Res 50(19), 11288–11296 (2011). https://doi.org/10.1021/ie2011356
Article
CAS
Google Scholar
M. Si, J. Zhang, Y. He, Z. Yang, X. Yan, M. Liu, S. Zhuo, S. Wang, X. Min, C. Gao, L. Chai, Y. Shi, Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose. Green Chem. 20, 3414–3419 (2018). https://doi.org/10.1039/C8GC00744F
Article
CAS
Google Scholar
S. Elaigwu, G. Greenway, Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrolysis 118, 1–8 (2016). https://doi.org/10.1016/j.jaap.2015.12.013
Article
CAS
Google Scholar
Y. Piao, B. Chen, Self-assembled graphene oxide-gelatin nanocomposite hydrogels: Characterization, formation mechanisms, and pH-sensitive drug release behavior. J. Polym. Sci. B 53, 356–367 (2014). https://doi.org/10.1002/polb.23636
Article
CAS
Google Scholar
Y. Piao, B. Chen, One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels. RSC Adv. 6(8), 6171–6181 (2016). https://doi.org/10.1039/C5RA20674J
Article
CAS
Google Scholar
S. Shaibu, F. Adekola, H. Adegoke, O. Ayanda, A. Comparative, Study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites. Materials. 7, 4493–4507 (2014). https://doi.org/10.3390/ma7064493
Article
Google Scholar
L. Zhang, L. Tu, Y. Liang, Q. Chen, Z. Li, C. Li, Z. Wang, W. Li, Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 8, 42280–42291 (2018). https://doi.org/10.1039/C8RA08990F
Article
CAS
Google Scholar
S. Nardecchia, D. Carriazo, M.L. Ferrer, M. Gutierrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013). https://doi.org/10.1039/C2CS35353A
Article
CAS
Google Scholar
Q. Fang, B. Chen, Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification. J. Mater. Chem. A 2, 8941–8951 (2014). https://doi.org/10.1039/C4TA00321G
Article
CAS
Google Scholar
Z. Ding, F. Li, J. Wen, X. Wang, R. Sun, Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 20, 1383–1390 (2018). https://doi.org/10.1039/C7GC03218H
Article
CAS
Google Scholar
D. Kim, K. Lee, K. Park, Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Indust Eng Chem 42, 95–100 (2016). https://doi.org/10.1016/j.jiec.2016.07.037
Article
CAS
Google Scholar
L. Bokobza, J. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C. 1, 77–94 (2015). https://doi.org/10.3390/c1010077
Article
Google Scholar
E. Biru, H. Iovu, Graphene Nanocomposites Studied by Raman Spectroscopy (IntechOpen, 2018). https://doi.org/10.5772/intechopen.73487
K. Tsirka, A. Katsiki, N. Chalmpes, D. Gournis, A. Paipetis, Mapping of graphene oxide and single layer graphene flakes – Defects annealing and healing. Front Mater (2018). https://doi.org/10.3389/fmats.2018.00037
L. Ballesteros, J. Teixeira, S. Mussatto, Chemical, functional, and structural properties of spent coffee grounds and coffee Silverskin. Food Bioproc. Tech. 7, 3493–3503 (2014). https://doi.org/10.1007/s11947-014-1349-z
Article
CAS
Google Scholar
H. Xu, L. Xie, M. Hakkarainen, Coffee-ground-derived quantum dots for aqueous Processable Nanoporous graphene membranes. ACS Sustain. Chem. Eng. 5, 5360–5367 (2017). https://doi.org/10.1021/acssuschemeng.7b00663
Article
CAS
Google Scholar
G. Melilli, K. Adolfsson, A. Impagnatello, G. Rizza, M. Hakkarainen, Intriguing Carbon Flake Formation during Microwave-Assisted Hydrothermal Carbonization of Sodium Lignosulfonate, Global Challenges (2020), p. 1900111. https://doi.org/10.1002/gch2.201900111
Book
Google Scholar
J. Pang, W. Zhang, J. Zhang, G. Cao, M. Han, Y. Yang, Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy density. Green Chem. 19, 3916–3926 (2017). https://doi.org/10.1039/C7GC01434A
Article
CAS
Google Scholar
K. Shimin, X. Li, J. Fan, J. Chang, Characterization of Hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind. Eng. Chem. Res. 51, 9023–9031 (2012). https://doi.org/10.1021/ie300565d
Article
CAS
Google Scholar
M.M. Titirici, R. White, C. Falco, M. Sevilla, Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energ. Environ. Sci. 5, 6796–6822 (2012). https://doi.org/10.1039/C2EE21166A
Article
Google Scholar
K. Adolfsson, M. Golda-Cepa, N. Erdal, J. Duch, A. Kotarba, M. Hakkarainen, Importance of surface functionalities for antibacterial properties of carbon spheres. Adv Sustainable Syst 3, 1800148 (2019). https://doi.org/10.1002/adsu.201800148
Article
CAS
Google Scholar
W. Gindl-Altmutter, J. Köhnke, C. Unterweger, N. Gierlinger, J. Keckes, J. Zalesak, O. Rojas, Lignin-based multiwall carbon nanotubes. Composites Part A 121, 175–179 (2019). https://doi.org/10.1016/j.compositesa.2019.03.026
Article
CAS
Google Scholar
W. Sagues, A. Jain, D. Brown, S. Aggarwal, A. Suarez, M. Kollman, S. Park, D. Argyropoulos, Are lignin-derived carbon fibers graphitic enough? Green Chem. 21, 4253–4265 (2019). https://doi.org/10.1039/C9GC01806A
Article
CAS
Google Scholar
V. Luan, J. Chung, E. Kim, S. Hur, The molecular level control of three-dimensional graphene oxide hydrogel structure by using various diamines. Chem. Eng. J. 246, 64–70 (2014). https://doi.org/10.1016/j.cej.2014.01.105
Article
CAS
Google Scholar
A. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir. 19, 6050–6055 (2003). https://doi.org/10.1021/la026525h
Article
CAS
Google Scholar
O. Compton, D. Dikin, K. Putz, C. Brinson, S. Nguyen, Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv. Mater. 22, 892–896 (2010). https://doi.org/10.1002/adma.200902069
Article
CAS
Google Scholar
C. Wan, M. Frydrych, B. Chen, Strong and bioactive gelatin-graphene oxide nanocomposites. Soft Matter 7, 6159–6166 (2011). https://doi.org/10.1039/C1SM05321C
Article
CAS
Google Scholar
E.M. Zadeh, A. Yu, L. Fu, M. Dehgan, I. Sbarski, I. Harding, Physical and thermal characterization of graphene oxide modified gelatin-based thin films. Polym. Compos. 35, 2043–2049 (2014). https://doi.org/10.1002/pc.22865
Article
CAS
Google Scholar
F. Li, X. Wang, T. Yuan, R. Sun, A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(II) removal. J. Mater. Chem. A 4, 11888–11896 (2016). https://doi.org/10.1039/C6TA03779H
Article
CAS
Google Scholar
Z. Feng, T. Danjo, K. Odelius, M. Hakkarainen, T. Iwata, A.-C. Albertsson, Recyclable fully biobased chitosan adsorbents spray-dried in one-pot to microscopic size and enhanced adsorption capacity. Biomacromolecules. 20, 1956–1964 (2019). https://doi.org/10.1021/acs.biomac.9b00186
Article
CAS
Google Scholar
Y. Shen, B. Chen, Sulfonated graphene Nanosheets as a superb adsorbent for various environmental pollutants in water. Environ. Sci. Technol. 49, 7364–7372 (2015). https://doi.org/10.1021/acs.est.5b01057
Article
CAS
Google Scholar
R. Xie, Y. Jin, Y. Chen, W. Jiang, The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Sci. Technol. 76(11), 3022–3034 (2017). https://doi.org/10.2166/wst.2017.471
Article
CAS
Google Scholar
X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, J. Gao, Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon. 50, 4856–4864 (2012). https://doi.org/10.1016/j.carbon.2012.06.013
Article
CAS
Google Scholar
C. Jiao, J. Xiong, J. Tao, S. Xu, D. Zhang, H. Lin, Y. Chen, Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 83, 133–141 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.061
Article
CAS
Google Scholar
L. Pan, Z. Wang, Q. Yang, R. Huang, Efficient removal of Lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8, 957–997 (2018). https://doi.org/10.3390/nano8110957
Article
CAS
Google Scholar
Y. Chen, L. Chen, H. Bai, L. Li, Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 1, 1992–2001 (2013). https://doi.org/10.1039/C2TA00406B
Article
CAS
Google Scholar
Z. Sui, Q. Meng, X. Zhang, R. Ma, B. Cao, Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22, 8767–8771 (2012). https://doi.org/10.1039/C2JM00055E
Article
CAS
Google Scholar
J. Gong, J. Liu, X. Chen, Z. Jiang, X. Wen, E. Mijowska, T. Tang, Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. J. Mater. Chem. A 3, 341–351 (2015). https://doi.org/10.1039/C4TA05118A
Article
CAS
Google Scholar
R.R. Elmorsi, S.T. El-Wakeel, W.A. El-Dein, H.R. Lotfy, W.E. Rashwan, M. Nagah, S.A. Shaaban, S.A. Ahmed, I.Y. El-Sherif, K.S. Abou-El-Sherbini, Adsorption of methylene blue and Pb2+ by using acid-activated Posidonia oceanica waste. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-39945-1
M. Mende, D. Schwarz, C. Steinbach, R. Boldt, S. Schwarz, Simultaneous adsorption of heavy metal ions and anions from aqueous solutions on chitosan-investigated by spectrophotometry and SEM-EDX analysis. Colloids and Surfaces A: Physicochem Eng Aspects 510, 275–282 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.033
Article
CAS
Google Scholar
X. Liu, L. Huang, L. Wang, C. Wang, X. Wu, G. Dong, Y. Liu, Preparation, adsorptive properties and chemical regeneration studies of high-porous activated carbon derived from Platanus orientalis leaves for Cr(VI) removal. J. Water Health 16.5, 814–826 (2018). https://doi.org/10.2166/wh.2018.068
Article
Google Scholar
X. Yi, F. Sun, Z. Han, F. Han, J. He, M. Ou, J. Gu, X. Xu, Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for cu (II) and U (VI) removal. Ecotoxicol. Environ. Saf. 158, 309–318 (2018). https://doi.org/10.1016/j.ecoenv.2018.04.039
Article
CAS
Google Scholar
Y. He, S. Li, X. Li, Y. Yang, A. Tang, L. Du, Z. Tan, D. Zhang, H. Chen, Graphene (rGO) hydrogel: A promising material for facile removal of uranium from aqueous solution. Chem. Eng. J. 338, 333–340 (2018). https://doi.org/10.1016/j.cej.2018.01.037
Article
CAS
Google Scholar