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Abstract 

In the production of polymeric drug delivery devices, dissolution profile and mechanical properties of the drug 
loaded polymeric matrix are considered important Critical Quality Attributes (CQA) for quality assurance. However, 
currently the industry relies on offline testing methods which are destructive, slow, labour intensive, and costly. In this 
work, a real-time method for predicting these CQAs in a Hot Melt Extrusion (HME) process is explored using in-line 
NIR and temperature sensors together with Machine Learning (ML) algorithms. The mechanical and drug dissolution 
properties were found to vary significantly with changes in processing conditions, highlighting that real-time meth-
ods to accurately predict product properties are highly desirable for process monitoring and optimisation. Nonlinear 
ML methods including Random Forest (RF), K-Nearest Neighbours (KNN) and Recursive Feature Elimination with RF 
(RFE-RF) outperformed commonly used linear machine learning methods. For the prediction of tensile strength RFE-
RF and KNN achieved R2 values 98% and 99%, respectively. For the prediction of drug dissolution, two time points 
were considered with drug release at t = 6 h as a measure of the extent of burst release, and t = 96 h as a measure 
of sustained release. KNN and RFE-RF achieved R2 values of 97% and 96%, respectively in predicting the drug release 
at t = 96 h. This work for the first time reports the prediction of drug dissolution and mechanical properties of drug 
loaded polymer product from in-line data collected during the HME process.

Keywords  Mechanical properties, Dissolution profile, PAT, Real-time monitoring, Drug delivery systems, Machine 
learning, Polymeric drug delivery

Introduction
 In vitro dissolution testing is considered one of the key 
analytical procedures in the pharmaceutical industry 
for quality assurance and is extensively used to predict 
the in  vivo drug release. In the literature many factors 

have been found to influence the dissolution profile in 
polymeric drug delivery systems including, particle size 
distribution, API (Active Pharmaceutical Ingredient) 
content, API moisture content, polymer content, and 
processing conditions [1–3]. At the product development 
stage, in vitro dissolution testing is used to monitor phys-
ical changes in the API, to assess product variability from 
batch-to-batch, and help to optimise the formulation to 
achieve the desired release profile [4]. As such, dissolu-
tion profile is considered an important Critical Quality 
Attribute (CQA) throughput the development life-cycle 
of product release [5]. Similarly, mechanical properties 
are also considered important CQA of pharmaceutical 
materials. For example, important mechanical charac-
teristics that affect the tabletting process include tensile 
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strength, elasticity, hardness, and fracture toughness of 
the drug loaded polymeric matrix [6]. For application in 
drug eluting implants, mechanical properties are impor-
tant to investigate the suitability for downstream process-
ing (such as 3D printing) and to assess the suitability of a 
given material for desired application [7].

To analyse mechanical properties and dissolution pro-
file, currently the pharmaceutical industry uses a well-
established batch-based offline lab testing approach for 
quality control. Such methods are destructive, labour 
intensive, and time and cost consuming. In particular, 
dissolution testing of slow and sustained release formula-
tions is prolonged, and a large amount of solvent is also 
involved. As an alternative to time and cost consuming 
lab-based testing, the potential for real-time monitor-
ing and prediction of dissolution profile and mechanical 
properties using PAT (Process Analytical Technology) 
can be explored. In recent years, machine learning meth-
ods have shown huge potential to explore many different 
aspects of pharmaceutics. Machine learning methods can 
potentially be applied during all stages of drug discovery 
and development including clinical trials [8–10].

Hot Melt Extrusion (HME) is considered a well-estab-
lished pharmaceutical manufacturing process with ability 
to integrate PAT tools for process monitoring. In-process 
Raman, NIR, and UV-Vis have been widely explored in 
the literature for real-time process monitoring in HME 
[11, 12]. In-line sensors coupled with machine learning 
methods have been extensively used for real-time drug 
quantification [13–19], and for prediction of the solid-
state of the polymer-drug product [20–23] drug uniform-
ity [24]; degradation of drug [25]; and degradation of 
polymer [26–29].

For prediction of the dissolution profile, offline NIR 
spectroscopic analysis of the product coupled with 
machine learning methods has been used in several stud-
ies. NIR spectra from intact tablets were used with lin-
ear regression methods including Partial Least Squares 
(PLS) and Principal Component Regression (PCR) for 
the prediction of tablet disintegration and drug dissolu-
tion profile [30–33]. These studies showed good poten-
tial of PLS and PCR to predict drug dissolution profile 
from off-line NIR spectra. More recent works, indicate 
the ability of Artificial Neural Networks (ANNs) to pre-
dict the drug dissolution profile in a tabletting process 
using a combination of process data and spectral data 
collected from the produced tablets using off-line NIR 
and Raman data [4, 34, 35]. Performance of an ANN 
model was compared with PLS, SVM (Support Vector 
Machine), and ERTs (Ensemble Regression Trees), with 
the ANN model giving the best predictive performance 
[4, 34, 35]. Galata et  al., [1], used Convolutional Neural 
Networks (CNN) to process Raman chemical images 

to predict release profile. Yang et al. [36], compared the 
predicted performance of DNN (Deep Neural Networks) 
with commonly used regression methods including RF, 
SVR, KNN and PLS and MLR (Multiple Linear Regres-
sion) for the prediction of dissolution profile of sus-
tained and released and oral fast disintegrating films. 
They developed machine learning models using formula-
tion and processing data and reported to achieve excel-
lent accuracy with DNN along with reasonable accuracy 
achieved by SVR and KNN. Bannigan et  al. [37], com-
pared the ability of different machine learning methods 
to predict fractional drug release from polymeric long 
acting injectables from formulation and process set-
tings data. Out of all methods Light Gradient Boosting 
Machine (LGBM) showed best performance to predict 
release profile. All these works highlight the ability of 
machine learning methods to predict dissolution profile 
from off-line spectral data of tablet products, together 
with process settings and formulation data. Pawar et  al. 
[38] for the first time used NIR at-line for the prediction 
of drug release profile in a continuous direct compaction 
process for acetaminophen tablet preparation. Acetami-
nophen concentration, blender speed, feed frame speed 
and compaction force were used as variables to conduct 
the experiments. NIR spectra collected at-line from all 
experiments were processed using multivariate linear 
regression to predict the dissolution profile at specified 
time points. The model achieved reasonable accuracy 
to predict the release profile of individual tablets and 
yielded similarity factor f2~72%. This work highlights the 
ability of using NIR as PAT tool during processing and 
achieving good predictive accuracy for dissolution pro-
file. However, in-line application is preferable to at-line 
due to more rapid feedback, continuous monitoring, and 
elimination of the need for human intervention in taking 
or preparing samples. However, it adds significant com-
plexity as in-process NIR spectra are subject to additional 
sample variations in temperature, pressure, viscosity etc.

In the case of mechanical properties, in-line NIR 
together with other process data has previously been 
reported to be effective for predicting the mechanical 
properties of extruded polymers using different Machine 
Learning techniques [39–42]. However, to date, no work 
has been reported on the prediction of mechanical prop-
erties or dissolution profile of a drug-loaded polymeric 
matrix using in-process sensor data. Real-time release 
testing with the help of a PAT tool is more desirable for 
continuous manufacturing environment [43].

In this work Polylactic acid (PLA) is used as the drug 
carrier. PLA has been used in a range of different appli-
cations including implants for cardiovascular, ortho-
paedic, and dental applications. PLA microspheres and 
PLA nanoparticles are used for drug delivery devices, 
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particularly for delivery of anticancer drugs. Other appli-
cations of PLA include biodegradable needles, screws, 
plates, sutures etc., [44–46]. Aspirin (Acetylsalicylic acid) 
was used as a model drug with PLA. Aspirin (INN,ASA), 
which is an NSAID (Non-Steroidal Anti-Inflammatory 
Drug) [47], is one of the most widely used drugs in the 
world. As an alternative to oral delivery of INN,ASA 
which has low bioavailability, INN,ASA has been used 
with polymeric implants to develop local implantable 
drug delivery devices for applications in osteogenesis 
[48–50] to prevent thrombosis [51], to prevent cardiovas-
cular events [52, 53], and for reducing implant associated 
infections etc. [54].

A twin-screw extruder is used to process PLA-
INN,ASA at a range of different processing conditions, 
with the aim of developing a soft sensor model using 
in-line NIR, melt temperature sensor data and process 
setting data for the prediction of drug dissolution pro-
file, tensile strength, and elongation at break. Based 
on previous literature for PLA-INN,ASA systems, two 
time points were selected for drug dissolution predic-
tion to capture burst release (6 h) and sustained release 
(96 h) respectively. A high burst release can be desir-
able in some applications (e.g. wound healing) but more 
generally a controlled sustained release is preferred 
and hence monitoring and control process of these to 
achieve the desired kinetics is desired. The results of 
various Machine Learning methods for the prediction of 

dissolution profile and mechanical properties were com-
pared using a robust Monte-Carlo Cross Validation (MC-
CV) approach. The non-linear machine learning methods 
showed excellent accuracy in prediction of drug dissolu-
tion and the mechanical properties of the drug loaded 
PLA matrix. Figure 1 shows the schematic representation 
of this work. To the best of the authors’ knowledge, this is 
the first report in the literature indicating that the CQAs 
of dissolution profile and mechanical properties of a drug 
loaded polymer carrier can be predicted from in-process 
data using machine learning methods.

Materials
Packaging grade PLA (2003D) was purchased from 
NatureWorks, LLC. INN,ASA (Acetylsalicylic acid > 99%) 
was purchased from Fisher scientific, UK. Figure 2a & b 
show the structure of PLA and INN,ASA.

Experimental details and in‑line sensors
PLA was dried at 65 °C for two hours prior to experi-
ments. A mortar and pestle was used to thoroughly mix 
PLA with INN,ASA (Aspirin) before extrusion. A 16 mm 
co-rotating Prism twin screw extruder with length to 
diameter ratio of 25:1 was used to process PLA-INN,ASA 
(PLA-ASP) mixture. The extruder barrel was divided 
into four sections operated at different temperatures. An 
adapter and slit die were attached (termed zone 5 and 6, 

Fig. 1  Schematic Representation of the methodology
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respectively) to the end of the extruder to capture in-pro-
cess data using NIR and temperature sensors.

Pure ASA has a melting point between 136 and 140 °C, 
and DSC data for ASA shows a broad endothermic peak 
between 135 and 210 °C, which relates to the thermal 
decomposition of ASA over this range [55]. PLA melt-
ing point is above 155 °C and thermal degradation of PLA 
starts above 200 °C [56]. In the literature ASA with poly-
meric carriers has been processed using HME and FDM 
printing process between 140 and 180 °C without thermal 
decomposition [56–58]. This is due to the fact that when 
drugs are processed with polymers which have relatively 
higher melting point, they can help to reduce the thermal 
decomposition of the drugs. During the HME process, 
the drug is dispersed within the polymer at molecular 
level and polymer can act as barrier to protect drug from 
thermal degradation. Furthermore, drug can interact 
with the polymer through hydrogen bonding, by form-
ing weak intermolecular forces (van der waals forces) or 
through hydrophobic interactions. These interactions 
help to reduce the molecular mobility of drug which can 
help to reduce thermal degradation and stabilise thermo-
labile drugs [58–60]. Moreover, shear stresses, residence 
time and moisture content in the polymer also play a cru-
cial role in the thermal decomposition of polymer-drug 
system during melt extrusion [61].

A Design of Experiment (DoE) methodology was used 
to design the experiments. A multilevel factorial design 
was used to study the effect of screw speed, temperature, 
and INN,ASA concentration on the final properties of 

PLA-INN,ASA matrix. Three factors including tempera-
ture, screw speed, and drug concentration were used. 
Based on the literature, three levels for temperature 
(140 °C, 150 °C, and 160 °C), two levels for screw speed 
(6 Hz and 8 Hz) and two levels for drug concentrations 
(10% and 20% INN,ASA) were used, giving a total of 
twelve process runs. Two additional runs were also car-
ried out at 175 °C (with 20% INN,ASA only) to analyse 
whether at this elevated temperature mechanical prop-
erties and release profile would be significantly affected. 
PLA with INN,ASA could not be processed below 140 
°C. It resulted in exceeding extruder torque limit and 
also resulted in extremely poor/inhomogeneous melting. 
So, in total 14 experiments were conducted. All samples 
were air cooled post-extrusion. For all samples, extruder 
torque was within the limit of the machine and no issues 
arose during processing. However, processing of samples 
at 175 °C was somewhat challenging as the product was 
very sticky. Table 1 lists the formulation and processing 
conditions for all experiments.

In our previous work on the prediction of yield stress 
of pure PLA processed via HME, it was determined that 
NIR along with conventional process sensors provides 
significantly better accuracy to predict the yield stress 
compared to using NIR or pressure and temperature sen-
sors alone [39]. Hence, in this work, the slit die at the 
end of the extruder was also equipped with in-line NIR, 
and melt temperature sensors. Two temperature sen-
sors termed T1 and T2 were inserted in the die (on the 
top and bottom) to record the temperature profile. Each 

Fig. 2  Chemical structure of a PLA, b INN,ASA
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transducer was embedded with type K thermocouples. 
The NIR spectroscopy system consisted of two fibre-
optic probes measuring NIR spectra in the wavenumber 
range of 4000–7500 cm-1 with a resolution of 1 cm-1. NIR 
spectra were collected using Interspectrum software. The 
temperature data was recorded at a sample frequency of 
5 Hz while NIR spectra were acquired every 5 s. The NIR 
spectroscopy system and temperature sensors were sup-
plied by FOS Messtechnik GmbH.

Characterisation
Mechanical testing
Three samples were taken in each process run from dif-
ferent portions of the extruded film and characterised for 
mechanical testing. Tensile strength and elongation at 
break for each sample were measured using Zwick Roell 
Z0.5 tensile tester with a load cell of 500 N. Tests were 
carried out at a speed of 5 mm/min, with a measurement 
accuracy of ± 1%.

Dissolution testing
DISTEK 2100 basket dissolution apparatus (Distek, Inc. 
North Brunswick, NJ, USA) was used to study the dis-
solution profile of the PLA-ASP samples. Pre-weighed 
PLA-ASP samples were placed inside the tank. The 
weight of the PLA samples with 10% and 20% INN,ASA 
was approximately 4gm for all samples. Based on the 
solubility data and the actual weight of INN,ASA in the 
sample, dissolution baths were filled with 900 ml Phos-
phate Buffer Solution (PBS) with pH 7.4. The apparatus 
was set at 37 °C and 50 rpm. After taking a 2 mL sam-
ple, tanks were replenished with same amount of PBS 
solution to keep the volume of the PBS constant during 

the process. Samples were analysed using a UV-vis spec-
trophotometer (Shimadzu Europa GmbH, Duisburg, 
Germany). Absorbance of all samples were recorded at 
wavelength 298 nm [47, 58]. A standard calibration curve 
for INN,ASA was constructed and standard procedure 
was used to calculate the dissolution profile of all samples 
at specified time points [62].

Differential scanning calorimeter (DSC)
DSC Perkin Elmer 4000 (Perkin Elmer Washington, MA, 
USA) was used to study the thermal behaviour of PLA-
ASP samples. Three cycles were used, in the first cycle 
the sample was heated from 30 to 250 °C using 10 °C/min 
heating rate. Then, in the cooling cycle, the sample was 
cooled down from 250 –30 °C using a 10 °C/min cool-
ing rate. This was followed by a second heating cycle at 
the same conditions as the initial heating cycle. Sample 
measurements were recorded in a nitrogen atmosphere. 
%Crystallinity (XC) of all the samples was calculated 
using Eq. (1).

Whereas,
�Hm = measured melting enthalpy
�H◦

m = enthalpy of 100% crystalline PLA (93.7 j/g)
wf  = weight fraction of drug in PLA

Selection of input data
To develop the models for the prediction of mechanical 
properties and dissolution profile, NIR readings for all 
samples were included. Approximately forty-four NIR 

(1)Xc =
�Hm

�H◦

m(1− wf)
*100

Table 1  Processing conditions for experiments

Process run %INN,ASA 
(%ASP)

zone1 zone2 zone3 zone4 zone5 zone6 Screw speed
°C °C °C °C °C °C Hz

one 10 95 100 115 130 140 140 8

two 10 95 100 115 130 140 140 6

three 20 95 100 115 130 140 140 6

four 20 95 100 115 130 140 140 8

five 10 95 100 115 130 150 150 8

six 10 95 100 115 130 150 150 6

seven 20 95 100 115 130 150 150 6

eight 20 95 100 115 130 150 150 8

nine 10 95 100 115 130 160 160 8

ten 10 95 100 115 130 160 160 6

eleven 20 95 100 115 130 160 160 6

twelve 20 95 100 115 130 160 160 8

thirteen 20 95 100 115 130 175 175 8

fourteen 20 95 100 115 130 175 175 6
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spectra were collected for each process run. In total 601 
wavenumbers from spectral region 6100–6700 cm-1 were 
included in the model. Melt temperatures readings from 
the thermocouples in the last section of extruder (die) 
were also included as input features. As little variation 
was observed in these melt temperature values during the 
process, only the mean melt temperature value for each 
thermocouple was included for each process run. Process 
setting data including extruder temperature settings and 
screw speed were also included as input features. The 
final size of the data set was n = 628, p = 610.

Figure 3 shows the NIR spectra for all process runs. To 
develop the models, only NIR spectra region 6100–6700 
cm-1 was selected. For PLA, this spectral region is known 
to be the first overtone region of C-H stretching, associ-
ated with C-H, O-H, C = O bond activities, and provides 
information about molecular chains orientation, degra-
dation and crystallinity [63]. These PLA properties affect 
the mechanical properties and dissolution profile of the 
product [64]. In our previous work for the prediction 
of yield stress of pure PLA from in-line NIR data, the 
same NIR spectral region was used and resulted good 
predictive accuracy [39, 65]. For INN,ASA, the spectral 
region 6100–6700 cm-1 is linked with first overtone of 
C-H stretching in the benzene ring [66, 67]. Hence, this 
spectral region is anticipated to be highly relevant for the 
quantification of mechanical and dissolution properties 
of PLA-INN,ASA matrix. It is highly beneficial to select 
only relevant spectral region/s to develop model instead 
of using the full spectrum which is likely to contain non-
informative regions. Including irrelevant input features 
is known to increase model complexity and increases 
the risk of model overfitting. In the literature, different 
strategies for automating the identification of relevant 

spectral regions have been proposed, of which iterative 
PLS (iPLS) approaches are the most common. Here we 
compare an automated backwards iPLS (BiPLS) method 
against our selection of the most relevant region based 
on chemical knowledge.

All spectra were pre-processed using baseline correc-
tions and Multiplicative Scatter Correction (MSC) to 
remove baseline shifts and undesired scatter effects [68]. 
Machine learning regression algorithms for prediction of 
mechanical properties and drug release profile included: 
PLS, Random Forest (RF), K-Nearest Neighbours (KNN), 
and feature selection methods including Recursive Fea-
ture Elimination (RFE), and Least Absolute Shrinkage 
and Selector Operator (LASSO) were used. For the pre-
diction of the mechanical properties, the mean value of 
the triplicate tests for tensile strength and elongation at 
break for each process run were used as target variables. 
As INN,ASA loaded PLA films exhibited burst release in 
first 6 h followed by sustained release up to 96 h, %drug 
released at t = 6 h and t = 96 h were used as target vari-
ables for the prediction of dissolution profile.

Training and validation of models
A Monte-Carlo Cross Validation (MC-CV) approach 
was used for robust validation of model performance. 
MC-CV is shown to outperform other cross-validation 
approaches such as Leave One Out (LOOCV) or k-fold 
CV in terms of the probability of selecting the correct 
number of components to include in the model and in 
terms of estimating the true prediction error. While 
LOOCV is widely used with small data sets, it has been 
shown to tend towards selecting too many components 
to include in the model, resulting in overfitting and 
over estimating the true prediction accuracy. To have 

Fig. 3  NIR spectra of all samples
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a stable estimation of model performance, a good bal-
ance between training and test set is required [69, 70]. In 
MC-CV a high number of train-test iterations is used. At 
each iteration, a different random split into training and 
test sets is applied. The test set is selected to investigate 
the predictive accuracy of the model and should gener-
ally be between 30% and 50% of the data [69]. This pro-
cedure is repeated several times, usually 100 or more 
[70]. As a higher number of iterations in MC-CV can be 
used compared to K-fold cross validation, MC-CV pro-
vides better estimates of model performance for differ-
ently selected unseen test sets. However, due to the high 
numbers of iterations, MC-CV is computationally expen-
sive compared to K-fold cross validation [69, 71]. Here, 
the MC-CV approach was used to select the spectral 
region that would yield best predictive accuracy, and also 
to investigate the robustness of the different Machine 
Learning regression methods. In this work, 100 itera-
tions of training and testing was carried out for cross-val-
idation. At each iteration, 30% of the data was randomly 
selected as the test set to assess the predictive perfor-
mance of the model trained on the other 70%. This gives 
100 different values of RMSE (Root Mean Squared Error) 
and R2 on different test sets. The standard deviations of 
the RMSE and R2 give a measure of the robustness of the 
models. A high standard deviation indicates a high sensi-
tivity to how the data is split for training and testing and 
hence is an indicator that the model is not robust.

As endorsed by FDA guidelines, the reliability of 
machine learning predictive models should be assessed 
considering accuracy (closeness of agreement between 
actual and predictive values, i.e., represented by predic-
tive errors), linearity (predicted vs. measured values), 
and precision (standard deviation of predictions) [72]. 
The mean RMSE (indicator of accuracy); the standard 
deviation of the RMSE (indicator of precision); the mean 
R2 (Correlation coefficient between actual and predicted 
values as an indicator of linearity); and standard devia-
tion  of  R2 were computed to assess the performance 
of each predictive model. A Normalised Root Mean 
Squared Error (NRMSE) was also calculated by dividing 
the RMSE by the range of the actual values of target vari-
ables, this gives a good indication of the model sensitiv-
ity relative to the amount of variation exhibited in both 
mechanical properties and the drug dissolution. The soft 
sensor was modelled using R (version 4.2.2) software as 
a back end and RStudio (version 2022.12.+353) software. 
Modelling script is provided in the Supplementary data.

Results and discussion
DSC analysis
Table  2 lists melting temperatures (Tm), onset melting 
temperatures (Tonset) and melt enthalpy of all the sam-
ples. Melting temperature is the temperature at which 
the sample undergoes significant phase transition from 
solid to liquid, while the onset melt temperature of a 
sample is defined as the temperature at which the sample 

Table 2  DSC results of PLA-INN,ASA samples for process runs 1-14

Process run %INN,ASA Die Temperature Screw speed Melt Temp (Tm) Onset Temperature 
(Tonset)

Crystallinity 
(%Xc)

°C   Hz  °C  °C

Pure INN,ASA - - - 144.35 139.37

PLA 160 6 154.42 143.44 44

PLA 160 8 150.89 143.52 38

One 10 140 8 147.09 143.21 46.79

two 10 140 6 154.42 143.54 42.68

three 20 140 6 141.09 132.14 30.58

four 20 140 8 139.3 125.19 32.70

five 10 150 8 144.75 131.72 28.88

six 10 150 6 147.91 130.29 36.74

seven 20 150 6 147.75 134.08 28.37

eight 20 150 8 143.74 137.25 34.47

nine 10 160 8 146.27 135.91 39.53

ten 10 160 6 148.96 141.13 36.62

eleven 20 160 6 146.25 137.57 37.77

twelve 20 160 8 140.41 127.65 33.16

thirteen 20 175 8 139.44 125.67 30.28

fourteen 20 175 6 139.05 123.11 37.48
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chains begins to melt. For pure INN,ASA the melt peak 
was identified at 144.35 °C with onset melt temperature 
139.37 °C. For pure PLA processed at the lower screw 
speed, melting started at a slightly higher temperature of 
154.42 °C than for pure PLA processed at higher screw 
speed which had a melt temperature peak 150.89 °C. 
This may be because screw speed is crucial in determin-
ing the residence time and ultimately exposure of poly-
mer matrix to heat and shear stresses. At lower screw 
speed, longer residence time, extended exposure to shear 
stresses can result in enhanced molecular orientation and 
crystallinity which can shift the melting temperature to 
higher value. This was supported by DSC results as PLA 
sample processed at lower screw speed exhibited higher 
crystallinity (44%) than PLA sample processed at higher 
screw speed (Xc = 38%).

Similarly, for all PLA-INN,ASA samples,  process runs 
at high temperature with high screw speed and high 
INN,ASA loadings (P12, P13, P14) exhibited the lowest 
melt temperature. For all PLA-INN,ASA samples, the 
melting temperature was found to be between 139 and 
147 °C, this shows that the presence of INN,ASA in the 
PLA reduced the melt temperature. It can also be seen 
from the Table that for all processing conditions, samples 
with 20% INN,ASA loading showed slightly lower melt-
ing temperature than samples with 10% INN,ASA load-
ing. This shows that a higher concentration of INN,ASA 
reduced the melting temperature of the sample. Moreo-
ver, for pure PLA the melting peak was detected around 
150–154 °C while for all PLA-ASP samples, the melt-
ing temperature was found to be between 139 and 147 

°C. The decrease in melting point suggests interaction 
between PLA-INN,ASA. The melting point is also influ-
enced by molecular weight  and crystallinity of the PLA. 
It was observed that addition of INN,ASA reduced the 
crystallinity of PLA. Figure  10 (provided in Supple-
mentary data) shows a single glass transition peak for 
all PLA-INN,ASA samples. This suggests that there is 
a miscibility between the  PLA  and  INN,ASA. If PLA-
INN,ASA has not interacted during process, two separate 
glass transition peaks would be observed. To summarise, 
the DSC results show interaction between PLA-INN,ASA 
samples, and suggest that different processing conditions 
affect the molecular orientation and crystallinity.

Moreover Fig. 4 shows the relationship between crys-
tallinity and melting temperature for all samples.  It can 
be seen that samples with %crystallinity higher than 35% 
showed a higher melting temperature than samples with 
%crystallinity less than 35%. However, some outliers, for 
example process run 14, 7 and 5, showed opposite trend. 
A strong positive relation between %crystallinity and 
melting temperature was not be observed.

Effect of process settings on mechanical properties
Despite the many benefits of PLA in drug delivery appli-
cations, processing of PLA using the HME process is 
challenging as PLA tends to degrade in the presence of 
high temperature and mechanical stresses. Moreover, 
PLA feedstock is also very sensitive to environmen-
tal conditions (humidity), and presence of moisture in 
the feedstock can lead to hydrolytic degradation during 
processing which ultimately affects the final properties 

Fig. 4  PLA-INN,ASA melt temperature vs. %crystallinity
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of product. For process optimisation and for consistent 
product quality, it is essential to understand the effect 
of process variables on the final properties of product. 
However, for the HME process understanding the effect 
of processing conditions on the final product properties 
is complex [61]. In this work, with changing process-
ing conditions, significant variation in tensile strength 
(standard deviation of 3.40 MPa) was observed across 
different process runs (Fig.  5a). While a correlation 

between process temperature and tensile strength might 
have been expected (due to degradation at high tempera-
tures), this was not observed. During the HME process, 
the effect of process variables is coupled, e.g., the melt 
temperature is affected by both screw speed and tem-
perature settings. These parameters affect the thermal 
properties such as onset and melting temperature (as 
listed in Table 2) of polymer-drug matrix. These param-
eters ultimately affect mixing, residence time and final 

Fig. 5  Effect of processing variables (a) temperature on tensile strength, and b screw speed, on tensile strength with 20% ASP; c effect of screw 
speed on tensile strength with 10% INN,ASA, d crystallinity vs. tensile strength
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properties e.g., mechanical properties, and it is not pos-
sible to determine optimum process settings from single 
factor analysis. For example, for 10% ASP, samples pro-
cessed at lowest processing temperature with high screw 
speed (140 °C, 8 Hz) showed highest strength among all 
samples. However, samples processed at 160 °C showed 
better strength than samples processed at 150 °C (see 
Fig. 5b & c).

Additionally, the %Crystallinity of all the samples 
was analysed to investigate the effect of crystallinity 
on the tensile strength. %crystallinity of all the samples 
was calculated using Eq. (1). Significant differences in 
%crystallinity were observed for samples processed at 
different processing conditions. The lowest %crystal-
linity value observed was 28% and the highest %crystal-
linity value was 46%. A standard deviation of 5.1% was 
found between all samples. Crystallinity is considered an 
important property of drug loaded polymeric products 
that directly influences the mechanical properties of the 
product. Generally highly crystalline samples will have 
high mechanical strength [73]. In Fig. 5d, a positive cor-
relation between crystallinity and tensile strength can be 
observed i.e., among all samples, the highest crystallin-
ity was recorded for process run 11, which exhibited the 
second highest tensile strength among all samples.   Pro-
cess run five which exhibited the lowest tensile strength 
among all samples also exhibited the lowest %crystallin-
ity. However, while there is a positive correlation between 
crystallinity and tensile strength, overall, the correlation 
is not very strong and outliers were observed for some 
process runs.

Based on these results, it can be seen that the effect of 
individual process variables on the mechanical properties 
and correlation between product attributes is not consist-
ent, and these does not provide enough information to be 
certain about materials behaviour and product properties 
under different processing conditions. In-process sen-
sors such as NIR on the other hand, can provide informa-
tion about the effect of process variables on the product 
quality in real-time and can help to understand materials 
behaviour during processing in a better way.

Effect of process settings on the dissolution profile
Polymeric drug delivery systems are mostly used to 
achieve a controlled release rate for targeted drug deliv-
ery. The benefit of using a controlled release formulation 
is that it achieves the same therapeutic effect with less 
frequent drug dosing than conventional drug delivery 
systems [68, 69, 74, 75]. Most of the controlled release 
formulations release drug through two different modes: 
burst release and sustained release. In sustained release, 
the drug/API is released over a prolonged period of time 
e.g., days/weeks/months etc. However, in burst release, 

an appreciable amount of drug/API is released immedi-
ately when drug comes in contact with the release media 
[76]. In the literature most of the controlled released 
formulations have shown some degree of initial burst 
release  [70–72, 76–78]. However, initial burst release is 
generally considered undesirable as it reduces the life-
time of the drug delivery devices (as sustained drug 
release is reduced), can cause toxicity, and means the 
patient would require frequent drug doses [76]. On the 
other hand, burst release in some applications is con-
sidered beneficial e.g., wound treatment, targeted burst 
release [76]. However, it is also considered challenging 
to predict burst release or the actual amount of drug that 
would be released in the initial burst while designing the 
drug delivery devices [76].

It is essential to select optimal processing conditions 
for designing a polymer drug delivery system for con-
trolled release. To select optimal processing conditions, 
it is necessary to understand the relationship between 
processing and formulation parameters and drug release 
profile. In this work, the effect of screw speed, tempera-
ture, and concentration of drug on the %drug released 
was studied at two-time points t = 6 h, and t = 96 h. Fig-
ure 5 shows %drug release of all the samples. Up to time 
t = 6 h the percentage of drug released was considered 
as a metric for comparing degree of initial burst release. 
The percentage of drug released from t = 6 h up to t = 96 
h was considered a suitable metric to compare the sus-
tained release [58]. This is based on similar release pro-
files for INN,ASA loaded PLA samples prepared using 
HME process has been reported by Venkatesh at el. 
[58]. Their samples showed a burst release in the initial 
8 h followed by a slow release until 72 h and after 72 h 
samples achieved a sustained release profile [58]. In this 
work all process runs conducted at different process-
ing conditions vary from each other in terms of %drug 
release. Drug concentration and mixing within the poly-
mer matrix play important role in describing initial burst 
release and drug release. As can be seen in Fig.  6, after 
the initial 6 h, for samples with 10% INN,ASA loading, 
approximately 2–8% drug was released. For samples with 
20% INN,ASA loading, 0.7-6% drug was released after 6 
h. Samples with 20% INN,ASA processed at temperatures 
150 °C and 160 °C (i.e. higher than the melting point of 
the drug), resulted in greater %drug release, and samples 
processed at around the melting point of INN,ASA (140 
°C ) resulted in very low %drug release after 6 h. After 
96 h all samples showed a significant increase in %drug 
release compared to the release at 6 h, and significant 
variation in %drug release among samples processed at 
different processing conditions was observed.

Varying processing conditions i.e., temperature and 
screw speed can be seen to have a significant effect on the 
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drug release profile. Figure 7a shows the effect of process 
temperature and screw speed on the release profile for 
samples with 10% and 20% INN,ASA. Samples with 10% 
INN,ASA processed at different conditions showed sig-
nificant variation in %drug release. At t = 96 h, for sam-
ples with 10% INN,ASA loading, a standard deviation 
of 4.01% drug release was observed in the samples pro-
duced at processing temperatures from 140 °C to 160 °C. 
The highest %drug release of 12.81% was observed at 150 
°C, and lowest %drug release of 5% was observed at 140 
°C. For samples with 20% INN,ASA, at t = 96 h, with the 
increase of temperature from 140 °C to 175 °C a standard 
deviation of 6.37% was observed. Highest %drug release 
of 16.46% was achieved at 140 °C, and lowest %drug 
release of 1.07% was observed at 150 °C.

The effect of screw speed and temperature are coupled 
and also depend on the drug content. Figure  7b shows 
the effect of drug concentration on the drug release pro-
file. In some cases, lower screw speed resulted in greater 
%drug release, but an opposite trend was observed for 
other cases. For example, for both formulations greater 
%drug release was observed at t = 6 h in samples pro-
cessed at the lower screw speed for all processing tem-
peratures. However, at t = 96 h, the higher screw speed 
resulted in greater %drug release than the lower screw 
speed for all of the 10% INN,ASA samples, while for 
the 20% samples temperature was also a factor. At t = 6 
h, samples with 10% INN,ASA loading showed greater 
%release than sample with 20% INN,ASA loading at all 
processing conditions. However, at t = 96 h samples with 
20% INN,ASA loading showed greater %release than 

samples with 10% INN,ASA loadings for most of process-
ing conditions with the exception of samples processed 
at 150 °C at high screw speed (Fig. 7b). Figure 7c shows 
the variation between percentage release for all process 
runs processed at different conditions for time t = 6 h and 
t = 96 h. It can be seen that different processing condi-
tions significantly affect the percentage release profile. 
However, it is difficult to understand the effect of pro-
cessing conditions using single factor analysis.

In summary, there are no clear relationships for selec-
tion of optimal processing conditions to achieve a spe-
cific profile of burst and sustained drug release. This is 
because for the HME process, specifically in the case of 
biodegradable polymer drug delivery systems, process-
ing conditions including screw speed, processing tem-
perature and also the melt temperature affect the thermal 
properties (glass transition temperature (Tg), melting 
temperature), degree of crystallinity and mixing of poly-
mer and drug [79]. These parameters in turn affect drug 
degradation, drug solubility and ultimately drug release 
behaviour [58, 73, 79]. In terms of the effect of formula-
tion (different loading of INN,ASA), INN,ASA is known 
to have plasticising effect, which is the decrease in glass 
transition temperature during processing. Hence, dif-
ferent drug concentration will result in different release 
behaviour [80]. Thus, for HME process effect of process 
and formulation parameters is coupled and it is challeng-
ing to investigate their effect individually and find a clear 
correlation.

Fig. 6  Dissolution profile of PLA-INN,ASA samples with time for process runs 1-14 (a) with 10% INN,ASA, b with 20% INN,ASA
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Fig. 7  Effect of process variables on PLA-INN,ASA samples for process runs 1-14 (a), temperature and screw speed, (b) % of drug released. (L_S) 
indicatse process runs at lower screw speed (6Hz), and (H_S) indicates process runs at high screw speed. c %release for process run 1-14, processed 
at different conditions
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Prediction of mechanical properties from in‑process data
 Machine learning methods were used to predict elon-
gation at break and tensile strength from the in-process 
data described in Sect. 5. Elongation at break, also known 
as fracture strain, is an indication of the elasticity of the 
material. Tensile strength indicates the highest stress a 
material can endure before fracturing permanently. For 
drug-eluting implants tensile strength and elongation at 
break are considered important CQA to investigate the 
suitability for downstream processing (such as 3D print-
ing) and to assess the suitability of a given material for 
desired application [7]. Tensile strength and elongation 
at break also affect the tabletting process and measured 
for quality assurance [6]. Input features of models devel-
oped for the prediction of tensile strength and elongation 
at break included NIR spectral region (6100–6700 cm−1), 
mean melt temperature and process settings data includ-
ing screw speed and process temperatures. Machine 
learning models used for prediction of mechanical prop-
erties included PLS, PCR, RF, KNN, RFE-RF and LASSO. 
An RF model was trained using default hyperparameters 

(For RStudio, default number of trees (ntree) = 500, and 
number of variables selected at each split (mtry) = No. 
of input features divided by 3). For KNN, K-values used 
varied from 3 to 20 (with an increment of 1). RFE was 
used with RF as learning algorithm. For both PLS and 
PCR, the first three latent variables captured 98% of the 
variance in the data and were used as optimal number of 
latent variables. For LASSO, the value of penalty term λ 
(lambda) was varied from 0.0001 to 0.001 in increments 
of 0.0001.

Table  3 compares the results of all machine learn-
ing methods for the prediction of tensile strength and 
elongation at break for spectral region 6100–6700 cm−1. 
For tensile strength prediction, both KNN and RFE-RF 
achieved excellent predictive accuracy indicated by low 
mean RMSE, low mean NRMSE and high mean R2 val-
ues. For KNN and RFE-RF, the standard deviation of the 
RMSE (0.029 MPa, and 0.086 MPa, respectively) with 
MC-CV is significantly lower than the standard devia-
tion between actual tensile strength values (3.40 MPa). 
A low standard deviation of RMSE indicates the model’s 

Table 3  Monte-Carlo Cross Validation (MC-CV) for the prediction of mechanical properties (N_s= No. of features selected, N_C= No. 
of components/latent variables)

Tensile Strength (MPa)
Method Mean RMSE (MPa) SD of RMSE (MPa) Mean NRMSE Mean R2 SD of R2

Spectral region 6100-6700 cm-1

  KNN 0.148 0.029 1.3% 0.997 0.0008

  (K=5)

  RFE-RF 0.54 0.086 4.9% 0.979 0.006

  (N_S=10)

  RF (ntree=500) 1.176 0.198 10.6% 0.945 0.025

  PLS 2.452 0.137 22.2% 0.372 0.076

  (N_C=3)

  PCR 3.038 0.094 27.6% 0.042 0.022

  (N_C=3)

  LASSO 3.019 0.096 27.4% 0.094 0.032

  (N_S=136)

Elongation at Break
Method Mean RMSE SD of RMSE Mean NRMSE Mean R2 SD of R2

  KNN 0.153 0.0326 0.73% 0.998 0.0005

  (K=5)

  RFE-RF 1.566 0.452 7.5% 0.875 0.065

  (N_S=10)

  RF (ntree=500) 2.944 0.439 14.2% 0.488 0.081

  PLS 3.177 0.271 15.3% 0.396 0.03

  (N_C=3)

  PCR 3.164 0.354 17.4% 0.354 0.213

  (N_C=3)

  LASSO 3.731 0.223 18.0% 0.212 0.035

  (N_S=139)
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ability to perform consistently for different unseen test 
sets. RFE-RF yielded a mean RMSE value of 0.54 MPa 
and R2 = 97.9%. with ten features selected for inclu-
sion in the model. KNN (K = 5) achieved excellent accu-
racy and yielded a mean RMSE value of 0.148 MPa with 
R2 = 99.7%. RF also achieved reasonable predictive accu-
racy for the prediction of tensile strength. For the pre-
diction of elongation at break, only RFE-RF and KNN 
performed well and achieved good predictive accuracy. 
REF-RF and KNN (K = 5) yielded a mean RMSE value 
of 1.566 AND 0.153, respectively. RF could not achieve 
good predictive accuracy for the prediction of elongation 
at break and result high mean RMSE value (2.944). Linear 
methods including LASSO PLS and PCR did not perform 
well for the prediction of tensile strength and elongation 
at break as indicated by high mean RMSE and low R2 
values.

Figure  8a & b compares the predictive accuracy 
(RMSE) of the machine learning methods for the predic-
tion of mechanical properties. The non-linear machine 
learning methods performed well and achieved good pre-
dictive accuracy. KNN and RFE-RF (for tensile strength 
and elongation at break), and RF (for tensile strength 
only) proved robust enough to achieve good predictive 
accuracy for different unseen test sets. Linear methods 
including PLS, PCR and LASSO have previously been 
reported to achieve good predictive accuracy for drug 
quantification and drug solid state prediction. However, 
in this work for the prediction of mechanical properties 
nonlinear machine learning methods outperformed PLS, 
PCR and LASSO. Results indicate that in-line NIR cou-
pled with machine learning methods (nonlinear in this 
case) can predict mechanical properties of drug loaded 

polymeric matrix over a wide range of processing condi-
tions quite accurately.

 An ablation study was carried out to test the impor-
tance of the different sources of input data in achieveing 
good predictive performance, i.e. separate models were 
developed using NIR data alone, and also process data 
alone for the prediction of tensile strength. However, 
these models did not achieve good predictive accuracy 
and yielded high RMSE values. Only the combination of  
NIR data together with process data achieved good accu-
racy. Mulrennan et al., 2022 [39] reported similar findings 
for the prediction of yield stress of the PLA. It should be 
noted one calibration model was used to assess the pre-
dictive ability of the models developed with process data 
and NIR data separately presented in Table 6 in the Sup-
plementary data, while models presented in Table 14 are 
validated more robustly using MC-CV.

Optimal features selected by RFE‑RF for the prediction 
of mechanical properties
Figure  9 shows the features selected by the RFE-RF 
model along with their importance score for the pre-
diction of tensile strength and elongation at break. For 
both tensile strength and elongation at break, melt tem-
peratures (captured from the top and bottom of the die 
at the end of extruder) were highlighted as the top two 
most important features. From the machine settings, the 
set temperatures of the adapter and die along with screw 
speed were also selected as important predictive features 
for all spectral regions. As NIR spectra are dominated by 
combination bands and overtone effects, it can be chal-
lenging to relate NIR wavenumbers to specific molecu-
lar bond activities. For the prediction of tensile strength, 

Fig. 8  Comparison of ML models’ accuracy a RMSE to predict tensile strength (MPa), b RMSE to predict elongation at break for PLA-INN,ASA 
samples from in-process data
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most of the wavenumbers were selected from 6400 cm−1 
region, and couple of wavenumbers from spectral region 
6300 cm−1, and 6600 cm−1. NIR wavenumbers in the 
selected regions are related to CH2 vibrations (first over-
tone stretching) [81]. For the prediction of elongation at 
break NIR wavenumbers were only selected from spec-
tral region 6500 cm−1. This spectral region is associated 
with C-H bending and C-H stretching of CH2. Stretch-
ing and bending vibrations mode of bonds are associated 
with the movement of atoms withing the polymers’ chain 
and affect the mechanical properties. For example, C-H 
stretching of covalent bond affect the tensile strength; 
stronger the bond (high bond strength) higher would be 
the tensile strength of the polymer. Similarly the bending 
mode of vibration is associated with the elasticity of poly-
mers [82]. In previous work for the for the prediction of 
yield stress of pure PLA from in-process NIR data, NIR 
wavenumbers in similar regions were also selected [65].

Selected features for the prediction of tensile strength 
and elongation at break provide important process 
insights, indicating that the melt temperature in the last 
two sections of the die has the most significant impact 
on the mechanical properties of the PLA-ASP product. 
Therefore, tight melt temperature control for the exit sec-
tions of the extruder is important to achieve the desired 
mechanical properties of PLA-ASP product.

Selection of the most relevant spectral regions using BiPLS
Backward Interval PLS (BiPLS) was also explored to 
automate the process of selecting the most relevant 
NIR spectral regions for prediction of the final product 
properties for comparison with the manual selection 
process. For BiPLS, the number of intervals to divide 
the spectrum into is a tuning parameter, here we var-
ied the number of intervals from 5 to 25 in increments 

of 5. The best accuracy was achieved with 20 intervals. 
Table  4 compares the results of the nonlinear machine 
learning models developed using manually selected 
spectral region with the models developed using spec-
tral regions selected using BiPLS for the prediction of 
tensile strength and elongation at break. For the predic-
tion of tensile strength, the models developed with spec-
tral region selected manually achieved better predictive 
accuracy compared to those developed using BiPLS 
except for RFE-RF. For tensile strength prediction, RF 
and KNN yielded high RMSE values for models devel-
oped using spectral regions selected by BiPLS. This could 
be because when models were developed using spectral 
regions selected by BiPLS, they selected a high number 
of features and increased model complexity. A slight 
improvement in accuracy was achieved for BiPLS-RFE-
RF as compared to using RFE-RF only. For elongation 
at break, RF yielded higher RMSE value. KNN achieved 
good accuracy (RMSE = 0.192) but yielded slightly high 
RMSE value for models developed using spectral regions 
selected by BiPLS. In the case of BiPLS-RFE-RF again a 
slight improvement in the accuracy was achieved.

Fig. 9  Optimal features and importance score for the prediction of mechanical properties (barrel zone5 represents set temperature in the adapter, 
barrel zone6 represents set temperature in the die, Melt temp1 and melt temp2 represent melt temperature from die)

Table 4  Summary of BiPLS-ML to predict tensile strength (MPa)

Model 6100-6700 cm-1 Spectral region selected by 
BiPLS (no. of intervals=20)

Tensile Strength MPa MPa

  RF 1.176 2.255

  KNN 0.148 2.609

  RFE-RF 0.54 0.42

Elongation at Break
  RF 2.944 3.167

  KNN 0.153 0.192

  RFE-RF 1.566 1.402
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To summarise, using a  BiPLS step for spectral region 
selection did not improve the accuracy of machine learn-
ing methods significantly. Moreover, using BiPLS step 
before applying machine learning algorithms requires 
significant computation and is therefore time-consum-
ing. For this data set, to complete the BiPLS step prior 
to applying an ML method took an additional twelve 
minutes. This suggests that selection of spectral regions 
based on chemical knowledge about wavelengths associ-
ated with relevant bond activities is more efficient than 
automated methods. This also highlights the need to 
develop a better method to automatically select the spec-
tral regions that contains relevant information.

Prediction of dissolution profile
Machine learning methods were used to predict the burst 
release at t = 6 h and the sustained release achieved at 
t = 96 h. Models were developed using same input fea-
tures as used to predict the mechanical properties i.e., in-
process spectral data, in-process melt temperatures, and 
process setting data. The performance of each machine 
learning model was validated using MC-CV with 100 
randomly selected unseen test sets. In each iteration (res-
ampling) 70% of the data was randomly selected  to train 
the model and the remaining 30% of the data  was used to 
test the performance of the model.

As can be seen from Table 5, KNN and RFE-RF mod-
els achieved excellent predictive accuracy indicated by 
low mean RMSE, low mean NRMSE, and high R2 val-
ues for both time points. The low standard deviation of 
the RMSE for RFE-RF and KNN is an indication that the 
models are robust to different training and test sets. RF 
performed well to predict the initial burst release but 

gave higher errors for the sustained release predictions. 
Similar to the case for prediction of mechanical proper-
ties, linear machine learning methods including PLS and 
LASSO performed poorly.

For t = 6 h, RFE-RF achieved better predictive accuracy 
than KNN for all spectral regions. To predict the degree 
of sustained release at t = 96 h, KNN achieved better 
predictive accuracy than RFE-RF for all three spectral 
regions. In the literature KNN has shown good predic-
tive accuracy in similar applications. The performance of 
a KNN model was compared with other machine learn-
ing methods to analyse different aspects of solid dosage 
forms [83] e.g., for dissolution profile prediction [36], for 
analysing physical stability of solid dispersion [84], and 
to analyse defects in solid dosage forms [85]. However, 
an advantage of using RFE-RF which is a feature selec-
tion method over KNN is that RFE-RF provides impor-
tant process insights by highlighting influential process 
variables. This information can help to better understand 
the underlying process factors and relationship of these 
factors and product quality. Key process variables once 
identified also can help to control and optimise the HME 
process to achieve desired final properties.

This work for the first-time reports prediction of drug 
release profile from in-line data at a range of different 
processing conditions. Before this, to the best of knowl-
edge, only one study has been reported in which NIR was 
used ‘at line’. In this work, RFE-RF and K-NN achieved 
good predictive accuracy (low RMSE), good linearity 
(close correspondence between predicted and meas-
ured values over the range of measurement) and good 
precision (low standard deviation of errors) for both 
time points. For example, for t = 6 h, KNN and RFE-RF 
achieved linearity 95.8%, 98.5%, and standard deviation of 
errors (as an indication of precision) 9.9% and 5.3%, and 
for t = 96 h, KNN and RFE-RF achieved linearity 96.3%, 
98.1% and precision 14.3%, and 18.4%, respectively. The 
normalised RMSE (NRMSE) value for both time points 
is less than 10% for the K-NN and RFE-RF models (see 
Table 5). The results indicate that it is possible to predict 
the extent of burst and sustained release of drug from in-
line data using machine learning methods with sufficient 
accuracy.

Optimum variables selected by RFE‑RF for the prediction 
of dissolution profile
Figure  10 shows the optimal features selected and their 
importance score for prediction of drug release at t = 6 h 
and t = 96 h. Similar to mechanical properties, the melt 
temperature and set temperatures from the last sections 
of the extruder (die and adapter), along with screw speed 
are selected as the most important variables influencing 
the dissolution profile. Processing temperature generally 

Table 5  Comparison of ML models to predict dissolution profile 
(N_S= No. of optimal features selected)

Spectral region 6100-6700 cm-1

t=6 hr Mean RMSE SD RMSE Mean NRMSE R2 SD R2

  RF 0.132 0.089 1.55% 0.998 0.004

  RFE-RF 
(N_S=12)

0.347 0.053 4.02% 0.985 0.0047

  KNN 0.558 0.099 6.5% 0.958 0.013

  PLS 2.094 0.062 24.7% 0.408 0.044

  LASSO 2.139 0.073 25.2% 0.385 0.048

t=96 hr Mean RMSE SD RMSE Mean NRMSE R2 SD R2

  KNN 0.988 0.155 5.4% 0.96 0.012

  RFE-RF 
(N_S=10)

1.118 0.173 6.1% 0.97 0.012

  RF 3.275 0.154 17.9% 0.811 0.048

  PLS 4.758 0.157 26.0% 0.068 0.033

  LASSO 5.508 0.182 30.1% 0.106 0.01
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has shown to have a significant effect on the release pro-
file as it affects the physical and chemical properties of 
drug loaded polymeric matrix. If the processing tempera-
ture is higher than the melting point of drug (as was the 
case here for process runs 5–14), it can cause a change 
in the solid state of the drug from crystalline to amor-
phous. Solid state of the drug, whether it is more crystal-
line or amorphous is directly related to dissolution profile 
of the drug. Drugs in amorphous form have shown bet-
ter bioavailability and dissolution profile. The solid state 
of the drug also has significant impact on the solubility 
and chemical stability of the drug which are two impor-
tant characteristics studied during development phase 
[86]. As explained in Sect. 6.1, all the samples processed 
at different temperatures resulted in different %crystal-
linity and varied from each other in terms of percentage 
of drug release as well. So, it is essential to understand 
the relationship between changes in temperature and 
its effect on solid state characteristics of polymeric drug 
delivery systems, and to optimise the temperature to 
achieve desired release profile [86].

Among NIR wavenumber, wavenumbers mostly were 
selected from 6100 cm−1, 6500 cm−1 and some from the 
6600 cm−1 regions. NIR wavenumbers in these regions 
are related to CH2 stretching vibrations and C-H bend-
ing vibrations. For polymer drug delivery systems, NIR 
wavenumbers are important as these are linked with dif-
fusion of drug molecules, polymer-polymer interactions 
and polymer chain mobility etc. [87–89]. For example, 
CH2 vibrations provide useful information about poly-
mer chain mobility, which is linked to the diffusion of 
drug through the polymer matrix. A low stretching fre-
quency indicates high chain mobility and in turn faster 
drug release. CH2 stretching is also linked with the swell-
ing of polymer when it comes in contact with dissolution 

media [87–89]. Overall, selected features provide impor-
tant process insight and highlight the importance of 
stringent temperature control from last two section of 
extruder (adapter and die) and screw speed as these are 
the main parameters that effect dissolution properties of 
PLA-INN,ASA product.

Conclusion
This work highlighted that processing conditions includ-
ing screw speed and processing temperature have signifi-
cant impact on the mechanical and dissolution properties 
of extruded PLA-INN,ASA. Final properties also depend 
on concentration of the drug. However, the relationship 
between processing conditions and final product proper-
ties is complex. Thus, methods for predicting the quality 
during processing are very valuable to help control and 
optimise the process. The results of this study showed 
that it is possible to predict final product properties 
including mechanical properties and dissolution profile 
of drug loaded PLA matrix from in-line and process set-
tings data analysed using machine learning methods. The 
performance of all the models was compared by using a 
robust Monte-Carlo Cross Validation (MC-CV) method, 
which allows evaluation of the sensitivity of the model 
to differences in how data is split for training and valida-
tion of the model. To predict tensile strength, all nonlin-
ear machine learning methods including RF, KNN, and 
RFE-RF achieved better predictive accuracy than linear 
machine learning methods including LASSO, PLS and 
PCR. However, to predict elongation at break only KNN 
and RFE-RF achieved good predictive accuracy. Further-
more, the BiPLS method was used to automatically select 
relevant spectral region for the prediction of mechani-
cal properties of PLA-INN,ASA. Results were com-
pared with the spectral region selected manually based 

Fig. 10  Optimal features and feature importance scores (Dissolution)
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on chemical information. Results showed that selection 
of spectral regions based on chemical knowledge about 
wavelengths associated with relevant bond activities wass 
more efficient than using the BiPLS automated method.

Similarly, all nonlinear methods including RF, KNN and 
RFE-RF achieved good predictive accuracy to predict the 
dissolution profile for both time points except for RF at 
t = 96 h. Overall, KNN and RFE-RF outperformed other 
methods and proved robust enough to predict different 
attributes of product for randomly selected unseen test 
sets. However, an advantage of using RFE-RF over KNN 
is it provides information about the most influential pro-
cess variables and this information is useful for process 
control and optimisation. As highlighted by RFE, melt 
temperature and process temperature from last two sec-
tions of the extruder (adapter and die) along with screw 
speed were highlighted as most influential variables to 
predict the mechanical properties and dissolution profile.

This is a first study investigating the potential of in-
line NIR for the prediction of drug release. However, as 
PLA-INN,ASA shows a slow-release profile, in future 
work a longer-term drug release study will be conducted 
to provide more time points for prediction. Moreover, 
more detailed analysis of solid state of the drug will be 
conducted to relate in-process drug degradation with 
drug release profile. However, this work highlights the 
potential of NIR coupled with machine learning meth-
ods to predict drug release profile in Hot Melt Extru-
sion. The results of this work show that NIR coupled with 
machine learning methods can potentially be used for 
real-time prediction of mechanical properties and dis-
solution profile. This can help to rapidly identify process 
issues and take immediate corrective action  if the prod-
uct is going out of specifications, saving materials, cost, 
and time.
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