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Abstract 

This review highlights the advantages of incorporating hexagonal Boron Nitride (BN) into the current membrane-
based architectures for water remediation over other well-explored 2D nanomaterials such as graphene, graphene 
oxide, molybdenum sulphide, MXenes. BN has an interlayer spacing of 3.3A0 which is similar to that of graphene, but 
smaller than that of the other 2D nanomaterials. BN is bioinert, and stable under harsh chemical and thermal condi-
tions. When combined with thin film composite and mixed matrix membrane architectures, BN can help achieve high 
permeance, dye rejection, and desalination. Laminar membranes assembled by BN nanosheets do not swell uncon-
trollably in aqueous environments unlike graphene oxide. BN nanomaterials have a large specific surface area which 
implies more adsorption sites, and are inherently hydrophobic in nature, which means the adsorbent in its powder 
form can be easily separated from contaminated water. BN adsorbents can be regenerated by treating with chemicals 
or heating to high temperatures to remove the adsorbate, without damaging the BN, due to its thermal and chemical 
inertness. BN nanomaterials have the potential to circumvent the current shortcomings of membranes and adsor-
bents, while greatly enhancing the performance of membranes and adsorbents for water remediation.
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Graphical Abstract

Introduction
The availability of clean water is one of the most criti-
cal issues globally, now more so than ever. With the 
ever-expanding population of the world and the dimin-
ishing sources of fresh groundwater, it is proving increas-
ingly challenging to meet the clean water needs of the 
modern world [1]. There is an urgent need for innova-
tion and technology to face the global water challenge. 
Amongst the most prevalent ways of water remediation, 
membrane-based filtration methods hold the reins com-
pared to their counterparts due to their high separation 
efficiency, low thermal energy input, and high-quality 
output. Polymer-based membranes are the most preva-
lent in all the filtration regimes – microfiltration (MF), 
ultrafiltration (UF), nanofiltration (NF), reverse osmo-
sis (RO), as these are easy to process on an industrial 
scale, and their properties can be tuned to suit the end 
requirement. In the RO and NF regimes, polyamide-
based thin-film composite (PA-TFC) membranes cur-
rently rule the market as these are easy to process, offer 
control over the thickness of the active polyamide layer, 
and most importantly, have high rejection rates of salts 

and other micropollutants. However, the current state-
of-the-art polyamide desalination membranes are only 
twice as porous as they were 20 years ago, with the same 
selectivity.

These membranes are still chlorine intolerant, which 
makes disinfection cumbersome and increases mem-
brane fouling and thus reduces its filtration capacity [1]. 
Water transport occurs through the solution-diffusion 
mechanism- a relatively slow process. NF and RO mem-
branes suffer from low flux, severe fouling, and high 
energy input. In addition, RO systems require post fil-
tration steps like remineralization. These are some of 
the reasons that led to the Government of India to com-
pletely ban the domestic usage of RO, unless required.

Although the research on PA-TFC membranes con-
tinues to move ahead at full throttle, these shortcom-
ings have prompted researchers to search for alternative 
materials. Considering that there is a need for a break-
through membrane technology with high water-to-solute 
selectivity if the needs of future generations are to be 
met, 2D nanomaterials seem to be the ideal candidates 
for this purpose. The isolation of graphene in 2004 at 
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the University of Manchester sparked a revolution in the 
study and application of 2D nanomaterials in various dis-
parate fields. Membrane technology is no exception. The 
last decade has seen an explosion of research on water 
filtration membranes based on these nanomaterials. 2D 
nanomaterials possess nanometer level thickness, leading 
to higher flux, large surface area, which results in numer-
ous transport pathways and greater area for solute-sur-
face interaction, vast array of tunable properties that can 
be tailored to meet the filtration needs, and nanometer-
thick transport channels and pores. These nanomaterials 
can be incorporated into the polymer matrix to obtain 
mixed matrix membranes, they can be free-standing 
porous 2D membranes, or can be deposited as an active 
layer atop a support membrane [2, 3]. The numerous 
ways in which nanomaterials can be used to enhance 
the performance of existing membranes and to fabricate 
completely new high-performance membrane systems 
is what propels the thriving research. These materials 
have been the focus of extensive research in the last few 
years. This review aims to bring the reader up to date by 
highlighting the work done on BN-based water purifica-
tion membranes specifically and Graphene, MXenes and 
 MoS2 based membranes generally. Unless mentioned 
otherwise, BN here implies hexagonal boron nitride.

BN is made up of boron and nitrogen arranged alternat-
ingly forming a hexagonal pattern in each monolayer. The 
monolayers follow an ABAB stacking pattern, due to the 
van der Waals forces between the monolayers as well the 
partial positive and negative charges on boron and nitro-
gen respectively. In the following sections, a few stud-
ies on graphene and graphene oxide, dichalcogenides, 
MXenes are discussed followed by a thorough survey of 
membrane applications and the role as an adsorbent of 
hexagonal boron nitride, which is the material of focus of 
this article. This review for the most part includes only 
the experimental studies involving these nanomaterials. 
As this review focuses on BN, the reader is referred to 
other general works on GO, MXenes, Dichalcogenides in 
their respective sections.

2D nanomaterials for water purification 
(membranes)
While the transport of solutes, water and other solvents 
occurs through solution-diffusion in RO membranes, and 
through convection in the UF and MF membranes and 
a combination of convection and diffusion in NF mem-
branes, the transport in 2D NMs occurs through molecu-
lar sieving through nanochannels and nanopores, and 
electrostatic interactions. 2D nanomaterials possess a 
host of desirable properties. A few have even been found 
to be anti-bacterial. The sections on each of the nano-
materials will illustrate, through studies, the properties 

that make these materials superior in water filtration 
applications.

Graphene and graphene oxide
Studies on membranes based on graphene and its deriva-
tives have burgeoned in the last few years because of 
their potential to enhance, if not replace, the perfor-
mance of current water purification membranes. This 
can be attributed to the thinness, large surface area, vast 
array of tunable properties, pliability in terms of func-
tionalization, mechanical strength, antimicrobial activ-
ity, and low density of graphene and its derivatives [3, 4]. 
In pristine graphene, carbon atoms that are  sp2 hybrid-
ized are arranged in a hexagonal pattern in a single layer, 
about 0.34  nm thick [5]. The atomic-level thickness of 
the layers results in very thin laminar membranes with 
high flux, even thinner than the typical 100 nm polyam-
ide active layer [6]. Additionally, graphene shows bet-
ter resistance to chlorine compared to polyamide. In its 
pristine form, graphene is impermeable to water. This 
can be circumvented by introducing nanopores into the 
sheets, as demonstrated in a modelling study by Suk 
and Aluru. Water flux observed was greater than that of 
CNT when the pore diameter was larger than 0.8 nm [7]. 
Although other studies have corroborated the high water 
permeability values along with salt rejection via sieving 
through the nanopores [8], fabrication of large, leak-free 
single layer graphene with controlled pore size and pore 
size distribution on an industrial scale remains an issue. 
On the other hand, graphene oxide (GO) is a derivative 
of graphene made by chemical oxidation and ultrasonic 
exfoliation of graphite and is easy to fabricate on a large 
scale. Depending on the degree of oxidation, GO consists 
of graphene sheets with hydroxyl, epoxide, carboxyl, and 
carbonyl groups in varying fractions, which increases the 
interlayer spacing to over 0.6  nm. These sheets can be 
easily stacked to form laminar structures held together by 
hydrogen bonding [5, 9]. Multilayer GO membranes are 
highly permeable to water because of the porous micro-
structure which includes the space between the edges 
of adjacent sheets, wide channels at wrinkles, and nano-
pores in the sheets. The latter contributes negligibly to 
multilayer structures. The selectivity of these membranes 
depends on the interlayer spacing, electrostatic interac-
tions between the negatively charged sheets and ions, and 
ion adsorption effects like cation-π and metal coordina-
tion to the sheets [10–12]. The major shortcoming of GO 
membranes, due to the presence of hydrophilic groups, 
is their uncontrollable swelling and instability on hydra-
tion, which largely increases the interlayer spacing and 
affects sieving ability. This can be controlled to an extent 
by reducing or chemically cross-linking the GO sheets, 
or stitching them to a polyamide layer [13, 14]. Other 
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shortcomings of GO multilayered membranes include 
low mechanical stability and low desalination capacity 
[15, 16]. Extensive work has been done on membranes 
based on graphene and its derivatives in the past decade. 
For detailed reviews of the same, the reader is directed to 
references [4, 5, 10, 11, 15, 16].

Transition metal dichalcogenides (TMD)
TMDs are a class of materials with the formula  MX2 
where M is a transition metal element from groups IV, V 
or VI and X is S, Se or Te, i.e. chalcogens. These materials 
form laminar structures of the form X—M—X, with the 
chalcogen atoms in two hexagonal planes separated by a 
plane of metal atoms. Adjacent layers are held together 
by weak van der Waals forces [17]. One TMD that has 
been extensively studied for applications in electron-
ics, and more recently in membranes is  MoS2. With the 
S atoms above and below the Mo plane, these layers are 
smooth due to the absence of functional groups unlike 
in GO, which can result in unimpeded water flow due to 
low hydraulic resistance. The absence of extruding hydro-
philic functional groups also means that van der Waals 
forces dominate instead of weak electrostatic forces and 
lead to stability in aqueous media. As each sheet is made 
up of 3 atomic layers,  MoS2 is robust under pressure 
unlike GO where the nanochannels tend to undergo elas-
tic deformation under pressure. Due to an abundance of 
S atoms,  MoS2 has highly negative zeta potential which 
imparts good dispersibility. There are numerous ways to 
obtain the 2D nanosheets of these materials, which have 
been discussed in detailed in refs [17, 18].

Laminar structured  MoS2 membranes can be fabri-
cated for molecular separation. Sun et  al. were the first 
to report such a membrane through vacuum filtration of 
chemically exfoliated  MoS2 sheets on to a polycarbonate 
porous support. The resulting membrane showed 3–5 
times higher permeance than GO, with similar rejec-
tion performance for 3 nm sized molecules for the same 
membrane thickness. The thin sheets partially overlap 
leading to many empty spaces which serve as the nano-
channels. These nanochannels were found to be unper-
turbed even under high pressure, unlike in GO where the 
nanochannels suffer elastic deformation [19, 20].

Another study which corroborated these observations 
was conducted by Wang et al. An  MoS2 membrane was 
fabricated by vacuum filtration onto a PES porous sup-
port post organolithium intercalation and forced hydra-
tion. The interlayer spacing was 1.2  nm (free spacing 
0.9  nm) post hydration, which remained unchanged 
even after soaking in water for 3 days. In comparison, the 
interlayer spacing of GO of similar thickness increased 
from 0.8 nm to 5.2 nm following excessive swelling. On 
drying, the interlayer spacing was 0.62 nm (free spacing 

0.3  nm), same as that of bulk  MoS2 due to the restack-
ing of the sheets, which makes it almost impermeable to 
water [19]. Ries et al. reported stable  MoS2 free-standing 
membranes through covalent functionalization with 
acetamide, methyl, and ethyl-2-ol groups using organo-
halides. The membranes exhibited superior desalination 
and organic molecule rejection compared to GO based 
laminate membranes. Through molecular dynamics 
simulation of water flow in the nanochannels, the team 
observed that the water velocity is enhanced in methyl 
functionalized membrane compared to the pristine one. 
This was attributed to the pinning of water molecules 
right underneath the S atoms due to the interactions 
between highly polarized O–H and Mo-S bonds, which 
slowed the local velocity in the pristine  MoS2 membrane.

On the other hand, the methyl groups substituted 
some of the pinning points and enhanced the overall 
velocity [21].  MoS2 sheets with nanopores also hold the 
potential to work as desalination membranes. In a simu-
lation study by Heiranian et al., a 0.2–0.6  nm2 area pore 
in an  MoS2 monolayer could reject 88% ions and predict 
a pure water flux 2–3 times that of other nanoporous 
2D materials [18].

Many other studies have been carried out with  MoS2 
nanosheets- one group recently designed an  MoS2 
nanosheets-silk nanofibril hybrid membrane inspired 
by nacre shell structure [22], another group developed 
a  MoS2/GO hybrid membrane for dye and salt removal 
[23]. Numerous studies have also reported the ability 
of  MoS2 nanosheets to adsorb heavy metals from water 
[24–26].

MXenes
MXenes (pronounced Maxenes) are a class of 2D tran-
sition metal carbides, nitrides, and carbonitrides that 
were discovered in 2011 by researchers at Drexel Univer-
sity [27]. MXenes have a general formula of  Mn+1XnTx 
(n = 1–3), where M, as an early transition metal (such as 
W, Mo, Cr, Ta, V, Nb, Hf, Zr, Ti, Y, or Sc), X is carbon 
and/or nitrogen, and T denotes the surface termination 
groups such as fluorine (–F), oxygen (–O), chlorine (–
Cl) and hydroxyl (–OH), and x represents the number 
of surface functionalities. The surface functionalities 
are a result of the etching and exfoliation of the MAX 
phase generally in aqueous media [27, 28]. In the pre-
cursor MAX phase, the A (Al or Si) layer is sandwiched 
within octahedral  Mn+1Xn, where the strong M-X bond 
has a mixed covalent/metallic/ionic character whereas 
the weak M-A bond is metallic in nature. Exploit-
ing the weak nature of the M-A bond, the A layers can 
be selectively etched out keeping the structure intact 
going from the 3D MAX phases to a 2D morphology. 
What makes MXenes stand out is the numerous possible 
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combinations of transition metals. The goal is to find 
the stable ones, currently an area of great interest for 
researchers. Titanium based MXenes have been explored 
the most, such as  Ti3C2Tx,  Ti2C1Tx with nitrides, carbides 
and carbonitrides.  Ti3C2Tx can be obtained, for example, 
by etching the MAX phase  Ti3AlC2 with hydrogen fluo-
ride. The unique structure of MXenes imparts various 
characteristics such as high surface area, hydrophilic-
ity, biocompatibility, high electrical conductivity, ease of 
functionalization. These properties make them ideal for 
use in energy storage applications, electronics, sensors, 
catalysis, environmental remediation, water purification 
[28, 29]. Like other 2D nanomaterials, MXenes can be 
used as a filler in polymeric composites, or directly as a 
membrane on top of a support layer. MXenes have also 
been shown to be antibacterial, good adsorbents, and 
have ultrafast water transport and ionic sieving abilities.

Ren et al. created a  Ti3C2Tx membrane though vacuum 
assisted filtration of its colloidal solution containing 1 nm 
thick sheets, on to a PVDF (polyvinylidene fluoride) sup-
port. The membrane showed greater selectivity for metal 
cations than GO. The ion selectivity was based on charge 
as well as the hydrated size of the ions, indicating the 
potential use of MXenes for water softening. MXenes are 
negatively charged. MXenes reject cations with hydra-
tion shell bigger than the interlayer spacing. MXenes 
can selectively aid ion permeation for cations which have 
a hydrated diameter smaller than the interlayer spacing 
such as  Na+ and  Mg2+. The  Na+ ions intercalate into the 
MXene gallery easily and get attached to the sheets on 
either sides, eventually leading the sheets covered with 
 Na+ to repel each other and slightly expands the gallery, 
resulting in higher permeation. On the other hand, for 
divalent and trivalent cations, the mechanism is slightly 
different. When these multivalent ions penetrate into 
the MXene gallery, there is a slight expansion in the gal-
lery first, but as more multivalent ion enter the galley 
the electrostatic attraction between the cations and the 
negatively charged MXene sheets overtakes, tightening 
the gallery and slowing down the permeation of multiva-
lent cations. Higher permeance was observed compared 
to GO membrane of the same thickness, which could be 
because of the narrow, uniform 2D nanochannels of 6.4 
 A0, due to the high aspect ratio of the sheets [30].

Biofouling is a major problem in membrane filtration, 
which is why membrane materials that exhibit antibac-
terial properties are desired. In a study by Rasool et al., 
antibacterial action of  Ti3C2Tx colloidal solution was 
observed against Escherichia coli (E. coli) and Bacillus 
subtilis (B. subtilis). The MXenes damaged bacterial cell 
membranes, releasing its cytoplasmic material. They 
were also found to have higher antibacterial activity 

than GO, for the same colloidal concentration [31]. 
Although it has been experimentally demonstrated that 
MXenes show antibacterial activity, the exact mecha-
nisms for the same are still under active research. 
Rasool et  al. observed that the bactericidal activity of 
MXenes is concentration dependent, and damages the 
bacterial cell membrane through direct penetration. 
This study does not however conclude on the contribu-
tion of reactive oxygen species, if any, on the bacteri-
ocidal activity of MXenes [31]. Further, another work 
by Rsool et  al. extended the above mentioned work to 
study the effect of MXene membrane aging on its bacte-
ricidal properties by keeping the membrane in ambient 
atmosphere for 1 month. Surprisingly, they observed 
enhanced bactericidal activity after aging the mem-
brane, compared to the freshly made membranes. This 
was attributed to the formation of anatase  TiO2 and 
defective 2D carbon on aging of the MXene membrane, 
which along with the MXenes aid in physical penetra-
tion of the bacterial cell membrane. Additionally, the 
group mentions that reactive oxygen species could have 
been generated from  TiO2 which could have aided in 
the enhancement as well, but the effect of the latter has 
not been quantitatively demonstrated [32]. A simula-
tion study by One-Sun Lee et  al. investigated the pos-
sible mechanism for antibacterial activity of MXenes 
using molecular dynamics. The study observed that 
the MXenes get adsorbed on the bacterial cell mem-
brane and cause a phase transition leading to a phase 
boundary defect, which further causes the intracellular 
material to leak, damaging the bacteria [33]. For a com-
prehensive study on the proposed mechanisms for the 
antibacterial activity of MXenes, the reader is directed 
to the recent review article on the same by Salimiyan 
Rizi [34].

MXenes have also been fabricated into membranes 
for oil–water separation, dye removal and desalination 
[35]. Another interesting application was illustrated 
by Zha et al., where a flexible, solar-driven water puri-
fication membrane was fabricated using MXenes and 
cellulose fibres [36]. Insanullah has discussed more 
applications of MXenes in water remediation in refer-
ence [27, 28]. MXenes are a relatively new entrant into 
the 2D nanomaterials market and there exist signifi-
cant issues that need be addressed to translate the lab 
research to an industrial scale. Some of these include 
the use of toxic chemicals for etching out the Al from 
 Ti3AlC2, limited knowledge of the potential toxicity and 
biocompatibility of MXenes and based membranes, and 
most importantly, their short shelf life as they degrade 
quickly in the open [28, 37]. Clearly, this promising 
nanomaterial’s potential is yet to be fully explored once 
its shortcomings are addressed.
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Structure, properties, and synthesis of hexagonal 
boron nitride
Boron nitride has a structure similar to graphene, in its 
2D form, so it is also called ‘white graphene’. The boron 
and nitrogen atoms are covalently bonded with a partial 
positive and partial negative charge on boron and nitro-
gen respectively and arranged alternatingly, in a hexago-
nal manner, in each (mono)layer. The nanosheets consist 
of a few hexagonal boron nitride layers with an interlayer 
spacing of 0.33 nm, held together by weak van der Waals 
forces. Due to the electronegativity difference, the elec-
tron pairs of the B-N σ bond are more confined towards 
nitrogen than boron. In the case of graphene, there is 
complete delocalization and equal sharing of the π elec-
trons between the C atoms, whereas the lone pair of the 
 pz orbital of nitrogen is only partially delocalized with 
that of boron, resulting in partial positive and negative 
charges on boron and nitrogen atoms respectively. This 
results in a stacking pattern where the B of each layer is 
between the N of the layers above and below it [38]. Typi-
cally, exfoliated BN is in the form of flakes consisting of 
2–5 monolayers, but can vary according to the synthesis, 
exfoliation and further functionalization routes. The lat-
eral dimensions of the flakes are 100–300 nm, while the 
lateral size of bulk BN can be 2-10 µm. BN has a density 
of about 2.2 g/cc, a melting point of around 2800 ℃ [39–
41]. BN has high mechanical strength, making it ideal as 
a reinforcing agent in certain polymers [42]. Pristine BN 
is inherently hydrophobic in nature.

BN possesses high chemical inertness and oxidative 
resistance due to its structure. 2D laminar membranes 
made by stacking BN flakes have numerous nanochan-
nels with large surface area because of the flakes’ high 
length to thickness (aspect) ratio. The higher aspect ratio 
makes the nanochannels tortuous for contaminants. It 
also simultaneously increases the likelihood that the con-
taminants come in contact with the surface of the hBN 
flakes, to prevent or enhance their permeation through 
specific interactions, depending on the end requirement. 
The surface of BN is overall negatively charged, which 
has been attributed to the presence of adsorbed hydroxyl 
groups, according to Pendse et  al. At a higher pH, an 
abundance of hydroxyl groups results in higher negative 
charge [43]. These unique set of properties renders BN 
ideal for a host of applications ranging from water reme-
diation and osmotic energy conversion to electronics and 
drug delivery.

BN is a very good adsorbent for heavy metals such as 
Cr(III), Cd(II), dyes like rhodamine B (RB) and organic 
molecules like tetracycline and a wide range of oils. The 
excellent adsorption capacity has been attributed to 
the polarity of the B-N bond (which makes it particu-
larly suitable for metal ion chemisorption), high specific 

surface area, and surface defects. A major advantage of 
BN as an adsorbent for organics is its high thermal sta-
bility, making the regeneration relatively easy by simply 
heating to high temperatures to burn the adsorbed organ-
ics, making it reusable. Additionally due to the inertness 
of hBN to harsh chemicals, substances adsorbed onto 
hBN can be removed by treated them with these harsh 
chemicals, while BN remains intact [44–47]. Studies have 
shown that BN is biocompatible and more than carbon 
nanomaterials and can be used as implant materials. 
One recent study demonstrated that BN, as a therapeutic 
agent, accelerated wound healing. The potential for BN in 
medicinal applications is attributed to its excellent chem-
ical stability and mechanical strength, absorption in the 
UV region, and low toxicity [38, 48].

The structure and properties of 2D nanomaterials are 
determined by techniques used to synthesize them, and 
the processing steps thereafter. For membrane applica-
tions, a high yield of BN with large lateral dimensions is 
desired to stack the sheets to make galleries which create 
tortuous pathways for contaminants, as mentioned ear-
lier. There are many methods for fabricating BN, includ-
ing chemical vapor deposition, epitaxy, mechanical and 
chemical exfoliation. Each technique has its advantages 
and disadvantages. Chemical vapor deposition and epi-
taxy involve high temperatures and gaseous atmospheres 
which produce BN with inherent defects over which 
there is little control, but the number of layers and the 
dimensions over a large scale can be controlled in these 
methods. On the other hand, mechanical and chemical 
exfoliation, though relatively cost-effective and good for 
large scale production, have low yield and produce flakes 
with a broad size distribution and offer no control over 
the number of layers. Other techniques include pulsed 
laser deposition, physical vapor deposition and pyroly-
sis of boron and nitrogen containing compounds [39]. A 
detailed review of these techniques for synthesis of BN 
can be found in reference [39]. To tailor the properties of 
BN to the application, it can be functionalized with dif-
ferent functional groups and polymers. The numerous 
ways demonstrated for functionalizing BN nanostruc-
tures have been detailed in the review references [38, 39]. 
Going forward, the sections on the applications of BN in 
water purification membranes and adsorbents will give a 
better insight into the effect of structure, properties, and 
the synthesis routes of BN on the performance of mem-
branes and adsorbents in the various works mentioned.

Applications of BN in water purification
BN based membranes
As mentioned earlier, the thin sheet-like structure, high 
surface area, small interlayer spacing, excellent thermal 
and chemical stability, and oxidative resistance, negative 
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surface charge, amongst other qualities make BN an ideal 
candidate for applications in water purification mem-
branes. Modelling and simulations studies on water and 
ion transport through nanopores in the BN monolayers 
and through the interlayer spacing, have demonstrated 
enhanced transport performance. Simulation studies by 
Gorbanfekr et al. show that the water transport is faster 
between the layers of BN due to low friction (Fig.  1) 
[49]. Another simulation study by Tocci et  al. discusses 
the transport of water at nanoscale, in contact with BN 
sheets [50]. Yet another simulation study by Liu et  al. 
proposes that the nanoslit patterns in BN monolayers 
can affect the water transport and the ion rejection per-
formance of BN nanosheet membranes [51]. Jafarzadeh 
et al. in their simulation study of the ion rejection perfor-
mance of nanoporous BN nanosheets, demonstrate that 
functionalizing the nanopore with fluorine and hydroxyl 
groups can improve its filtration performance [52]. Since 
this review focuses on the experimental studies on fil-
tration performance of BN based membrane architec-
tures, only a few simulation studies are mentioned on the 
same. From the above studies, it can be concluded that 
the absence of functional groups lead to a friction free 
transport of water through the nanochannels made by 
stacking hBN sheets into a gallery, assuming non porous 
sheets. If the hBN sheets have pores, it can further aid 
in the transport of water by reducing the path traveled 

by the water molecules through the hBN gallery, while 
rejecting ions with hydration shell greater than the size 
of the nanopores. Further modification of the nanopores 
with functional groups such as hydroxyl or fluorine has 
been proposed to aid in the ion rejection through the 
nanopores through specific interactions between these 
and the ions.

With a combination of various synthesis, exfolia-
tion and functionalization strategies, this decade has 
seen numerous works on the use of BN as a membrane, 
a foam, a reinforcing agent, an adsorbent, a surface 
modifier, and more. Following are experimental studies 
conducted on applications of BN in water filtration mem-
branes, followed by a section on its applications as an 
adsorbent. Each of these works will help in understand-
ing the properties of BN that are specifically applicable 
for water purification, through various architectures.

Lei et  al. synthesized porous BN nanosheets of high 
porosity and specific surface area to demonstrate its 
sorption properties for oils, organic solvents, and dyes 
(Fig.  2). The porous nanosheets showed fast absorption 
kinetics and high mass uptake (up to 33 times their own 
weight for ethylene glycol) compared to other common 
adsorbents of oils and organic solvents. This has been 
attributed to adsorption, capillary effects, and interca-
lation because of the hydrophobic nature and polarity 
of the B-N bond. The porous nanosheets outperformed 
other absorbents for dye sorption as well. The absor-
bent was easily collected as the nanosheets floated on 
water and were regenerated by heating in air or solvent 
extraction, which were possible because of the excellent 
thermal and chemical stability of BN. This regeneration 
capacity over multiple absorption cycles makes BN stand 
out [53]. Lei et  al. also developed aerogels and flexible, 
free-standing membranes from amine functionalized 
BN. The latter was prepared through vacuum filtration. 
This is notable because the group used a high yield and 
the relatively simple and scalable exfoliation and func-
tionalization process of ball-milling BN with urea. This 
is a mechano-chemical exfoliation in which shear forces 
exfoliate the BN sheets and simultaneously decompose 
urea, prompting the  NH2 groups to attach to the edges 
and defects of the BN layers [40].

Like other 2D nanomaterials, BN can be infused into a 
polymer matrix to enhance its properties. Liu et al. devel-
oped a composite porous BN/PVDF membrane through 
non-solvent induced phase inversion, by adding BN to 
the PVDF dope solution. The permeability of both water 
and organic solvents obtained was thrice that of neat 
PVDF due to the highly cross-linked networks between 
porous nanosheets and PVDF. A 99.99% separation was 
obtained for oil/water emulsions, pharmaceuticals were 
filtered up to 14L/g and organic dyes up to 9.3L/g. The 

Fig. 1 System of nanoconfined water molecules (red and white 
balls) between BN membranes (blue and pink balls) with nanometric 
interlayer distance h for typical a Density Functional Theory and b 
Molecular Dynamics supercells. Reprinted with permission from 
reference [49]. Copyright 2020 American Chemical Society
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filtration performance was attributed to the polarity of 
the B-N bond, high porosity, and specific surface area 
of the nanosheets. The membranes could be recycled as 
well [54].

Marichy et al. developed a well-crystallized, self-stand-
ing BN membrane using a combined atomic layer depo-
sition (ALD) and polymer derived ceramic (PDC) route 
with control of through porosity in terms of size and 
shape. The cylindrical pores obtained ranged from a few 
tens to hundreds of nanometers. These membranes, even 
though brittle, could be inserted into a suitable porous 
support and indicate potential use in osmotic energy 
conversion and water filtration [55].

A thin film nanocomposite nanofiltration membrane 
was fabricated by Abdikheibari et  al., where 0.004wt% 
amine functionalized BN (modified through ball-milling 
with urea) was added to the aqueous solution of pipera-
zine and interfacial polymerization was carried out with 
trimesoyl chloride on a porous polyethersulfone sup-
port. The nanosheets, embedded in the polyamide layer, 
enhanced the hydrophilicity and the free volume avail-
able for water flow, thus increasing the flux as well as the 
fouling resistance. A 13.4% improvement in the flux and a 
5.2% increase in natural organic matter (NOM) rejection 

was observed. 0.97 of the initial flux was maintained 
when a humic acid solution was filtered [42]. Another 
architecture developed by the same group involved depo-
sition of amine functionalized BN(0.003wt%) on top of 
the polyamide layer of piperazine and trimesoyl chlo-
ride on polyethersulfone porous support. This resulted 
in a smooth, hydrophilic surface with a negative charge, 
which led to a 59% increase in flux and 50% increase 
in resistance to fouling by NOM. Sodium alginate and 
bovine serum albumin rejection was above 92% [56].

The earlier works incorporated BN into the matrix of 
the polymer membranes by adding them to the dope 
solutions. Gonzalez-Ortiz et al., on the other hand, devel-
oped a BN/polyvinylalcohol (PVA) microfiltration mem-
brane through pickering emulsion templating. Here, BN 
was used as an emulsion stabilizer and to enhance the 
mechanical and antifouling properties due to its high 
hardness, corrosion, and oxidation resistance. PVA was 
added to an aqueous dispersion of exfoliated BN, fol-
lowed by ethyl benzoate, which resulted in a homoge-
neous emulsion post sonication. The BN sheets would 
adsorb at the liquid–liquid interface, form a rigid shell 
around the droplets, and prevent coalescence. This was 
cast onto a glass substrate, cured, and immersed in a bath 

Fig. 2 Exfoliated few-layer BN. a TEM image of few-layer BN, with the selected-area electron diffraction pattern (inset) indicating a layered BN 
structure. Scale bar, 50 nm. b, c HRTEM images of the edge folding of two few-layer BN sheets with three and six BN layers, respectively. Scale bars, 
2 nm (b) and 5 nm (c). d HRTEM and the fast Fourier transform images of a few-layer BN sheet. Scale bar, 2 nm. e, f Atomic force microscopy image 
and corresponding line-scan profile of few-layer BN. g XRD patterns of few-layer BN and pristine h-BN. (Reprinted from ref. [40] under Creative 
Commons License)
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containing ethanol, HCl and glutaraldehyde for cross-
linking, as PVA is water soluble otherwise. The curing 
time was found to greatly affect the pore size and poros-
ity of the resulting membrane (Fig. 3). For a certain cur-
ing time and corresponding pore size, the membrane was 
found to reject 76% of polystyrene latex nanoparticles 
of size 0.1 μm and 99.7% of the particles of size 1.2 μm. 
The membrane showed higher permeance and rejection 
capabilities than the PVA based membranes fabricated 
through other conventional methods such as thermally 

induced phase separation or Electrospinning. More 
importantly, this method was green—free from harmful 
reactants and waste generation [57].

Low et  al. fabricated a polyethersulfone/BN mixed 
matrix nanofiltration membrane through non-solvent 
induced phase separation. An aqueous dispersion of BN 
was sonicated with sodium dodecyl sulfate and added 
to the dope solution. The resulting membrane was more 
hydrophobic, more negatively charged, due to the inher-
ent hydrophobicity of BN and its negative charge. While 

Fig. 3 SEM images of the h-BNNS/PVA porous membranes depending on the curing time before crosslinking: a cross-section of single PVA, b 
surface of single PVA, c cross-section of BNP-24 h, d surface of BNP-24 h, e cross-section of BNP-3 h, f surface of BNP-3 h, g cross-section of BNP-1 h 
and h surface of BNP-1 h. Reproduced from Ref. [57] with permission from the Royal Society of Chemistry
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the neat PES membrane only recovered 80% water flux 
on fouling, the PES/BN membrane recovered the flux 
completely. The permeance increased but the rejection, 
as tested with the dye Rose Bengal, decreased by a small 
amount owing to BN acting as a plasticizer [58].

The addition of BN to the membrane matrix gener-
ally makes the surface denser, rougher, more hydropho-
bic and increases the permeance. The rugged surface is a 
result of the nodular structures on the membrane surface 
due to solid–liquid de-mixing, in which BN acts as nuclei 
for crystallization and partly because of aggregation of 
BN nanosheets. To demonstrate this, Zahirifar et  al. 
incorporated BN into PVDF to develop a membrane for 
air-gap membrane distillation via non-solvent induced 
phase separation and BN was added to the casting solu-
tion. It also enhanced the thermal stability of the mem-
brane along with an 18% increase in the tensile strength. 
These improvements could be credited to the excellent 
thermal and mechanical strength of BN itself [59].

Although relatively easy to fabricate, mixed matrix 
membranes may not always fully exploit the properties 
of 2D nanomaterials such as their high aspect ratio and 
specific surface area, nanoscale interlayer distance, etc. 
On the other hand, laminar membranes formed by stack-
ing sheets of 2D nanomaterials offer desirable molecular 
separation based on electrostatic interactions and siev-
ing, through nanopores and nanochannels. Following are 
studies on the same, giving insight into the mechanisms 
of transport in such membranes.

Chen et al. developed a multipurpose thin functional-
ized BN (FBN) membrane through vacuum filtration 
onto a nylon support to separate mixtures. BN powder 
was functionalized by ball-milling with urea. The flakes 
were 1.2 nm high and 100–300 nm in lateral dimensions. 
Each flake consisted of 4–5 monolayers. The thickness of 
the FBN layer could be varied by changing the volume 
of their aqueous dispersion. Permeation tests of tolu-
ene, p-xylene, pyrene, and rhodamine B were conducted 
in ethanol and water. RhB was fully blocked, while per-
meation of acetone in water and toluene in water was 
5.8 and 2.2 times that through GO, respectively. Permea-
tion was on par with that of MXene laminar membranes. 
The short and abundant transport pathways in the FBN 
membrane rendered such high flux possible, along with 
the excellent thermal and chemical stability of BN itself, 
which kept the structure stable. Membranes were stable 
even after solvation for 24 h in acetone, ethanol, hexane, 
toluene, and water as well as in extreme pH environ-
ments [60].

Another work by Chen et al. involved pressure driven 
filtration studies of the FBN membrane on a nylon sup-
port in organic solvents. Dye rejection tests were per-
formed with Methylene Blue, Acid Fuschin, Evans Blue 

and Congo Red in Methanol. A 0.4 µm thick FBN layer 
showed 99% rejection for gold nanoparticles (5 nm) and 
> 99% rejection for congo red. The water flux was 1.5 
and 16 times greater than of MXenes (0.1–0.4 µm thick) 
and reduced graphene oxide (2  µm thick) membranes 
respectively, reported in literature. The performance was 
ascribed to the hydrophilicity, the stability of the flakes 
and the spaces between them, and the structure of the 
nanochannels, which depended on the lateral size of the 
flakes, the height of the nanochannels, and the gap size 
between the edges of the flakes [61].

Ultrafast permeation of ions was observed through 
an FBN membrane on a cellulose ester support by Chen 
et al. The 200 nm thick FBN membrane essentially acted 
as a mesh with a pore size of 8.6  A0, as it completely 
rejected ions with hydrated radii greater than 4.3  A0. The 
membrane exhibited ultrafast permeation with a per-
meation rate of nearly 9 mol m-2 h-1 for sodium ions for 
smaller hydrated ions, nearly 25 times faster than the the-
oretical diffusion rate. Small ions such as  Na+,  K+,  Mg2+, 
 Ca2+ and  Zn2+ permeated quickly while larger ions and 
molecules such as  Mn2+, sucrose and glycerol were much 
slower to permeate or did not permeate at all (Fig.  4). 
Their observations indicated that permeation rates were 
influenced by the mass, size, charge, and hydration radii 
of the ions and the concentration of feed solution and 
surface charge of the membrane [41].

The above experiments involved functionalizing BN 
with amine groups, which reduces the negative sur-
face charge of BN, as Pendse et  al. argue. They created 
a membrane where exfoliated BN, via bath and probe 
sonication, was vacuum filtered onto an AAO (Anodized 
Aluminium Oxide) porous support to get a 10 µm thick 
layer. By not functionalizing the BN, the group chose to 
exploit the highly negative surface charge of BN while 
reducing the processing steps. To demonstrate that the 
filtration property depends on the size of the sieving 
channels as well as the surface charge, filtration tests 
were performed with dyes and salts across a wide range 
of charges and molecular sizes. The estimated size of the 
nanochannels was 1.2–5  nm and zeta potential of BN 
was calculated to be −60 to −70 mV between a pH of 8 
and 10 [43]. The negative surface charge was estimated 
to be caused by the adsorption of hydroxyl ions on the 
surface of the BN, which would only increase at a higher 
pH. The membrane outperformed other membranes 
based on functionalized BN, MXenes, dichalcogenides, 
graphene and derivatives in terms of small anion rejec-
tion and water permeability [43].

Hybrid membranes fabricated using two different 
nanomaterials can offer a synergistic effect and circum-
vent the limitations that might show up when using each 
material separately. For instance, Lin et al. developed an 
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amine functionalized BN and GO hybrid membrane on 
a polydopamine coated porous PES support. The major 
problem of instability and excessive swelling of GO in 
aqueous media was solved by alternately depositing GO 
and BN resulting a tightly packed laminar stacking. The 
covalent bonding between the edges of the two nano-
materials stabilized and prevented the GO from swell-
ing. This also created sufficient nanochannels for water 
permeance and dye rejection. The resulting membrane 
was found to be stable across solutions of different pH. 
A rejection rate > 99.5% was observed for methylene blue 
across hybrid membranes of varying GO and BN concen-
tration. The water flux varied from 1–4.5 LMH at 300psi, 
across different compositions [62].

Osmotic energy generation from seawater is a promis-
ing alternative source of energy with low environmen-
tal impact. Also called salinity gradient energy or blue 
energy, it make use of the salinity gradient between sea-
water and river water which causes an osmotic pressure 
difference. The membranes used to generate power from 
salinity gradients must have high mechanical strength, 
thermal and chemical stability- to withstand the lifecy-
cle of osmotic energy generation plants- combined with 
high salt rejection values for pressure retarded osmosis. 

Stable nanochannels formed by the interlayer gallery of 
membranes made from 2D nanomaterials present an 
opportunity to exploit this blue energy through reverse 
electrodialysis and pressure retarded osmosis. Chen 
et al. created a cartilage inspired BN-aramide nanofiber 
composite membrane via layer-by-layer assembly to 
meet these requirements, making a hybrid of 2D nano-
materials and 1D nanofibres. BN was chosen because of 
its superior thermal and chemical stability, and stability 
in a variety of solvents and extreme pH environments in 
addition to its ultrafast water and ion transport proper-
ties, which are the major requirements for membranes 
used for osmotic energy generation. BN was ball-milled 
with glucose for hydroxyl groups. Aramid nanofibres 
were added to impart mechanical robustness to prevent 
microcracks under pressure and to create additional 
transport pathways. A glass substrate treated with 
poly(diallyldimethylammonium) chloride polycation 
(PDDA) was immersed in aramid nanofiber and BN sus-
pensions alternately for a certain number of steps (n) to 
create a multilayered nanocomposite membrane which 
they termed as  ABNn.  ABN30 was flexible and only 1 µm 
thick. The layers are held together strongly by dense 
hydrogen bonds between the nanosheets and the fibers. 

Fig. 4 a Photograph of FBN water dispersion. b Photograph of the FBN membrane. The FBN membrane is highlighted with a red dash line to 
distinguish it from the support membrane. c TEM image of the edge of an FBN flake. d Cross-sectional SEM image of the FBN membrane with a 
thickness of 200 nm supported on a filter membrane. e Schematic diagram of the permeation of different ions through FBN membranes. f Tested 
species, the left box shows the ions that can pass through the FBN membrane, whereas the right box illustrates the hydrated ions and molecules 
that are blocked by the FBN membrane. Reprinted (adapted) with permission from reference [41]. Copyright 2019 American Chemical Society
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This resulted in a tensile strength of 370  MPa, which 
was much greater than that of membranes made only 
from BN or aramide nanofibers. They demonstrated 
that  ABN30 membranes in tandem could power a digital 
timer [63].

Yazda et al. fabricated a BN/SiN hybrid membrane with 
nanopores in the sub 10 nm range through a technique 
called tip-controlled local breakdown, using an atomic 
force microscope, for osmotic power generation. With a 
pore-to-pore spacing of 500 nm, they concluded that the 
mechanical stability provided by SiN and the high surface 
charge density of BN resulted in a power density of 15 
 Wm−2 when using KCl as the electrolyte. Their technique 
allowed for precise control over the size and the distribu-
tion of pores in the BN layer [64].

Keshebo et  al. fabricated a BN lamellar membrane by 
vacuum filtration of its aqueous dispersion contain-
ing tannic acid onto a Nylon support membrane. Tan-
nic acid acted as a green exfoliating agent by specifically 
interacting with the BN layers and thereby reducing the 
BN interlayer attraction. It also helps the BN nanosheets 
adhere to the Nylon support membrane. The resulting 
membrane showed > 99% rejection of congo red, and a 
high antifouling tendency against humic acid even after 
7 cyles [65].

It can be concluded from the above works that exploit-
ing the properties of BN relevant to the applications- 
such as its hydrophobic nature, tunable sheet size as 
well as surface area according to the synthesis routes, its 
capacity to withstand high temperatures, harsh chemi-
cal environments, and its mechanical strength- the over-
all properties of the membranes could be significantly 
enhanced. Although the research on applications of 
BN in membrane-based technology is relatively in early 
stages, it suggests optimistic results in effective nanofil-
tration and desalination membranes for the future.

BN based adsorbents
The adsorption performance of any adsorbent is evalu-
ated in terms of the following factors. Ideally, the adsor-
bents should demonstrate high separation selectivity and 
high adsorption capacity, quick uptake, easy regeneration, 
and multiple cycling ability. Unless mentioned otherwise, 
1 cycle includes an adsorption as well as a desorption 
cycle. The absorbent should also exhibit high gravimet-
ric capacity, should be easy to deploy and recover after 
the adsorption process. Since boron and nitrogen are 
light elements, boron nitride absorbents would have large 
gravimetric capacity. BN has high chemical and thermal 
stability. This means that BN adsorbents can be regener-
ated by simply heating at high temperatures to remove 
the adsorbed organics, without destroying the structural 
integrity of the adsorbent, or can be washed with various 

solvents and chemicals to remove the adsorbed contami-
nants. The adsorbed substances can also be removed 
using solvent extraction or broken down using harsh 
chemicals, without damaging BN since it exhibits very 
high chemical inertness. Since nanomaterials have a large 
specific surface area, adsorbents made from BN nanoma-
terials would be ideal as they combine the properties of 
nanoscale materials with properties of BN [47, 53].

Das et  al. fabricated a non-functionalized BN mem-
brane through vacuum filtration of a suspension of boron 
nitride nanosheets in NMP and IPA onto a PVDF support 
membrane. After performing filtration tests with BPA (a 
neutral solute), MO and DR-80(anionic dyes), for a cer-
tain optimum thickness of the lamellar membrane, they 
concluded that the retention was driven by the adsorp-
tion of these pollutants to the BN sheets. They found the 
effects of size exclusion or Donnan exclusion to be neg-
ligible in this case. The membrane showed high stability 
even in an acidic environment, and recovered 90% of its 
dye absorption capacity after 4 cycles of rejection indi-
cating the reusability of the membrane [66].

Lei et  al. synthesized boron nitride nanosheets using 
boron trioxide and guanidine hydrochloride as the boron 
and nitrogen precursors respectively. Since a high tem-
perature of 1100  ℃ was used for the synthesis, nitro-
gen, hydrogen chloride and ammonia gases are released 
from the decomposition of guanidine hydrochloride, 
which created pores of a few tens of nanometers in the 
boron nitride nanosheets over a micron in their lateral 
dimensions. Here, the porosity is due to the pores in 
the nanosheets as well as the spaces between the sheets 
themselves. After the oils and organic solvents were 
adsorbed from water, the group studied the XRD pat-
terns of the BN adsorbent before and after the adsorption 
process. According to the XRD patterns, the interlayer 
spacing in the porous boron nitride nanosheets increases 
slightly as the oils and organic solvent molecules inter-
calate into interlayer spacing due to its porosity and 
inherent hydrophobicity. The percentage change in the 
interlayer spacing would depend on the adsorbate and 
the adsorbent-adsorbate affinity as well. Comparatively, 
the interlayer spacing of commercial bulk BN remains 
unchanged even after saturation with oil and organic 
solvent. This ability of porous BN to slightly swell and 
accommodate adsorbent molecules while still main-
taining its structural stability has been correlated to its 
greater adsorption capacity compared to the commer-
cial bulk BN [53]. Liang, G. et  al. came up with a crea-
tive route to synthesize a nanonet from BN nanofibers, 
with  NH4BF4  and  NaN3  as precursors while using  CS2 
as a catalyst through a solvothermal process at 260  °C 
(Fig. 5). The nanonet, which was made up of 8 nm thin 
BN nanofibers, was able to adsorb methylene blue from 
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water, and sieve Au nanoparticles with respect to their 
size when used as a membrane [67].

Lian Gang et  al. synthesized BN nanospheres with 
outer diameters of 50–300  nm using a template free 
route, for hydrogen storage as well as organic pollutant 

removal from water. The nanospheres showed prefer-
ential adsorption for basic yellow 1, an aromatic dye 
molecule even in the presence of  CuSO4, a heavy metal 
ion. This has been attributed to the specific non-cova-
lent interaction between the aromatic rings and hBN, 

Fig. 5 Schematic Illustration of the Formation Process of BN Ultrathin Fibrous Nanonets. BN ultrathin fibrous nanonets prepared by one-step 
solvothermal process with CS2 as the catalysts. a, b Typical SEM images and c, d the corresponding TEM images of BN nanonet with different 
magnification ratios; e, f HRTEM images of a typical fibrous knot (circled) and a BN nanofiber with diameter of ∼8 nm. Reprinted with permission 
from reference [67]. Copyright 2013 American Chemical Society
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similar to the π-π interactions observed in graphene 
and its derivatives [68]. Liu et al. also synthesized boron 
nitride spheres high absorption capacity for a range of 
heavy metals and organic dyes [69]. Theoretical stud-
ies have reported that BN shows only weak interactions 
with hydrogen, but some experimental works have shown 
otherwise, so the use of BN in hydrogen storage needs to 
be delved into further [70, 71]. Along with  H2 adsorption 
and storage, hBN has also been touted as a prospective 
material for  CO2 capture [72–74].

Li, J., Xiao, X., Xu, X. et al. synthesized “activated BN” 
by adding a surfactant to the precursors during the syn-
thesis of BN. The activated BN had a ribbon like struc-
ture, which were porous and rough. The BN obtained 
here had a d-spacing of 0.35 nm, which is slightly greater 
than that of hBN (0.33 nm). The activated BN performed 
better than porous BN and activated carbon as well, in 
the case of adsorption of  Co2+,  Ni2+,  Ce3+  and  Pb2+, 
tetracycline, methyl orange and congo red. Accord-
ing to the group, the surfactant added during synthesis 
helped increase the surface area and pore volume and 
the adsorption ability, but the exact mechanism is yet to 
be elucidated [44]. Apart from the presence of functional 
groups, the number of defect sites and the degree of crys-
tallinity also influences the performance of BN. Li, Jie, 
et al. synthesized BN fibres which was more crystalline in 
nature which they claim imparts stability to the adsorbent 
during the absorption–desorption process, compared 
to the activated BN using a surfactant in their previous 
work (discussed in the previous paragraph). They fur-
ther activated these fibres with a mixture of sulphuric 
acid and nitric acid treatment, which created defects and 
functional groups at the edges of BN while maintaining 
its crystallinity mostly intact (as corroborated by their 
XRD plots and TEM micrographs) and increasing the 
absorption capacity [75]. Rod like porous hBN has been 

synthesized by Song et al. for antibiotic adsorption, spe-
cifically tetracycline-based compounds here. The micr-
oporosity and mesoporous nature is concluded from the 
adsorption isotherms and the adsorption–desorption 
hysteresis curves [76]. hBN has been synthesized in vari-
ous forms for adsorption of different antibiotics, and bis-
phenol A as well, which is a toxic substance prominent in 
the food packaging industries [77, 78].

In the above-mentioned work, the different forms of 
BN were synthesized as a powder, and used as a powder 
for the adsorption experiments, which tends to agglom-
erate during adsorption and desorption, which can limit 
its performance. Hence, Jie Li et  al. synthesized acti-
vated BN embedded with NaOH groups, in a 3D form to 
increase the surface area of interaction of the pollutants 
with the adsorbent, while maintaining structural stabil-
ity. NaOH-3D BN was prepared to adsorb HCOH and 
simultaneously act as a support for its catalytic degrada-
tion. Its porous structure has been attributed to the inter-
facial spaces between the nanoflakes. HCHO removal 
on NaOH-3D BN were much higher than those of the 
NaOH-embedded commercially activated carbon and 
the NaOH-embedded activated BN. NaON-3D BN  was 
regenerated just by using an electric hair dryer and 
retained its HCHO adsorption capacity of 90.5% for 15 
cycles. The embedded NaOH converts the toxic HCHO 
to relatively less toxic methoxy and formate salts [79].

Yanming Xue et  al., fabricated a boron nitride porous 
monolith (BNPM) for dye and heavy metal removal as 
well as oil–water separation. The group first prepared a 
boric acid-dissolved formaldehyde-dicyandiamide resin 
as the precursor in the form of a rod-like monolith, which 
was porous because of the gases formed during the resin 
solidification reaction, which bubbled through to escape 
and resulted in a porous precursor monolith. This precur-
sor solid was then pyrolyzed above 1000 ℃ in ammonia 

Fig. 6 Hierarchical structures of the free-standing BN foam. a Photograph of a free-standing BN foam. b SEM image of a BN foam network. c 
Magnified SEM images of two branches and a node. d High-resolution TEM images of BN sheets near their folded edges, where the number 
of dark lines for the edges indicates the thickness of 12 and 4 layers, respectively. The interlayer spacing obtained from the edges is ∼0.34 nm. 
e High-magnification TEM image and its fast Fourier transform (inset), indicating the typical hexagonal lattice of the BN sheet. Reprinted with 
permission from reference [80]. Copyright 2013 American Chemical Society
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atmosphere under ammonia flow to obtain a BN porous 
monolith. The BNPM showed excellent oil adsorption 
capacity and could be easily regenerated by burning the 
adsorbed organic substances in air. BNPM also showed 
high adsorption for rhodamine B dye and Copper (II) 
ions from water due the hydroxy and amine groups resid-
ing on the walls of micropores and holes of BNPM. The 
dye was removed from BNPM using ethanol. The group 
explained how the hierarchical structure enhances the 
adsorption of oil, dye, or organic molecules onto boron 
nitride. Although the boron nitride is in its turbostatic 
form, the concept of a hierarchical structure for adsorp-
tion can be applied for applied across different materi-
als, and boron nitride in its hexagonal form as well. The 
macropores allow unrestricted pathways for pollutants 
to diffuse though. The large number of micropores then 
provide abundant surfaces for the pollutants to adsorb 
onto. Since boron nitride is inherently hydrophobic, the 
micropores allow oils to flow into and fill up the pores 
through capillary action. Next, the surface interaction 
plays the major role in adsorption of dye molecules and 
heavy metal ions. The pore walls, pore network, nodes 
and defects present in the structure of boron nitride, as 
well the functional groups (if any) influence the dye and 
heavy metal adsorption [45]. The role of hierarchical 
structure of porous architectures of adsorbents is dis-
cussed in the work by Jun Yin et al. on the boron nitride 
foam synthesized using CVD, discussed in the following 
paragraph.

Jun Yin et  al. fabricated BN foams with a network of 
hollow tubes via CVD using borazane as the precur-
sor and a Nickel foam as the template. The foam could 

recover completely even after compression up to 70%. 
As shown in the SEM and TEM micrographs of the foam 
in Fig.  6, it is made ofhierarchical structures- foam-like 
macrostructure, hundreds of micrometers porous net-
work, hollow-tube-like branches and nodes at tens of 
micrometers, branch wall consisting of a few BN layers, 
and atomic lattice of hexagonal BN (Fig. 6) [80].

2D nanomaterials have large specific surface area but 
using the adsorbent in a powder form has certain draw-
backs as well. Due to the aggregation tendency of these 
powders during absorption process, their uptake could 
be hindered. To circumvent this, three-dimensional (3D) 
architectures can be made with 2D nanomaterials. These 
3D architectures are lightweight, have very low densi-
ties, and can create hierarchical porous structures while 
retaining the inherent features of 2D nanomaterials. 
These 3D forms are also relatively easier to handle com-
pared to the powder form of BN, that is, to deploy and 
recover because of their structural stability [81, 82]. Zhao, 
H. et al. synthesized a 3D BN foam which they called “3D 
WG”, where WG stands for white graphene, as hexago-
nal boron nitride is isostructural to graphene but is white 
in color. Using thiourea and aminothiourea as vesicants 
which were added to ammoniaborane as the precur-
sor. The  CS2,  NH3 and NCNS gases released aided in the 
foaming. they obtained a low-density 3D WG foam with 
pore sizes ranging from a few nanometers to microns. 
The foam could absorb a range of organic solvents up 
to 70–190 times its weight and had higher organic dye 
adsorption in comparison to other forms of BN such as 
hollow spheres [68] fibrous nanonets [67], nanocarpets 
[83] and porous nanosheets [53]. Liu, Z., Fang, Y., Jia, H. 

Fig. 7 a–c The process of adsorbing gasoline by 3D C-BN; d Original appearance of the 3D C-BN; e Burning the sample after absorbing gasoline; 
f The appearance of 3D C-BN after six times recycling. Reproduced from reference [84] under the Creative Commons license. https:// creat iveco 
mmons. org/ licen ses/ by/4. 0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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et  al. prepared a 3D “cheese-like” C-BN with pore size 
ranging 2-100  nm, which could adsorb methylene blue 
and congo red, as well as  Cr3+,  Cd2+,  Ni2+ from water. 
The group also demonstrated successful oil–water sepa-
ration performance of C-BN with salad oil, gasoline, and 
pump oil. The adsorbent could be regenerated by heating 
at certain temperatures for a certain amount of time, and 
reused, as shown by the multiple regeneration-adsorp-
tion cycles (Fig. 7). The group combined the high adsorp-
tion capacity of boron nitride with that of carbon, with 
the C-BN hybrid material. Interesting point to note- the 
C-BN adsorbent was synthesized as a foam. But for dye 
and heavy metal removal tests it was ground into a pow-
der, while for the oil–water separation tests the foam was 
used as is [84].

Composites of BN with polymers also offer excellent 
adsorption properties by exploiting the combined prop-
erties of BN as well as those of the polymer. Like in the 
case of mixed matrix membranes discussed in the pre-
vious section, dispersing various forms of BN in a poly-
mer matrix to fabricate a foam, or directly depositing 
BN nanomaterials on already synthesized foams imparts 
structural stability to the entire architecture while 
enhancing the adsorption properties of the composite 
foams. For instance, Yu et  al. fabricated a porous com-
posite of BN nanosheets and PVDF for oil–water separa-
tion and demonstrated its application as a membrane as 
well as an adsorbent, exploiting the inherent hydropho-
bicity of BN and PVDF [85]. Krishna Kumar et al. fabri-
cated polyethyleneimine modified hBN nanosheets, on 
which magnetite  (Fe3O4) nanoparticles were grown, and 
were blended with polyvinyl alcohol and freeze dried to 
create an aerogel for heavy metal removal and organic 
dye removal. The magnetite nanoparticles enhanced the 
capacity for heavy metal adsorption [86]. Liu et al. coated 
BN nanosheets on cotton fabric and melamine sponge 
using a layer by layer assembly for enhanced oil–water 
separation and dye removal [87]. Similarly, Zhou et  al. 
made BN deposited melamine foams for excellent oil–
water separation and dye adsorption [88]. These studies 
demonstrate the application of BN as an adsorbent as is 
or by incorporating it into existing architectures, such 
as in the 3D porous structures, to exploit its properties 
that make it ideal for use as an adsorbent- low density, 
lightweight, high surface area to volume ratio, inherent 
hydrophobicity, ability to withstand high temperatures 
and harsh chemical environments without damaging its 
structural integrity, and high mechanical strength.

Table  1 reports the architectures and as well as the 
application of BN in water remediation in the refer-
ences in this review, along with their corresponding 
performance.

Conclusions
The future of BN nanomaterials in water purification 
membranes looks promising. However, numerous chal-
lenges must be overcome to realize their full potential. 
The synthesis routes for fabricating most nanomateri-
als are complex, long-winded, and expensive, and often 
involve hazardous chemicals. For example, hydrogen flu-
oride is used to etch out Aluminium from the MAX phase 
of  Ti3C2Tx [28]. In the case of BN, its chemical inertness 
is a double-edged sword. On the one hand, it makes BN 
adsorbents easy to regenerate, prevents swelling and 
retains the sieving performance of laminar membranes in 
various solvents, but on the other hand renders the func-
tionalization of BN quite difficult [40]. More effective, 
high-yielding methods of functionalization of BN are 
needed to alleviate these issues. When incorporated into 
a polymer matrix, aggregation of the nanomaterials pre-
sents a problem, which can be controlled by modifying 
the latter to aid matrix-filler interaction and dispersion. 
Laminar membranes formed by stacking these nanoma-
terials swell or disperse on hydration, which can affect 
the separation efficiency and durability. Unstable struc-
tures can also be leached out during filtration. Attaching 
additional functional groups, covalently cross-linking the 
sheets, and using the right porous support would solve 
these issues. Most filtration studies are conducted with a 
feed solution of one or few model micropollutants, which 
is far from the real feed water composition. Experiments, 
along with modelling and simulation studies must be car-
ried out with complex feed matrices containing different 
types and levels of pollutants representative of the real 
compositions. This helps understand the selectivity of the 
2D BN nanomaterials-based membrane for one pollutant 
in the presence of others.

Although laminar membranes of 2D nanomaterials 
show high water permeance, their desalination capacity 
has not yet reached that of polyamide membranes. Their 
selectivity depends on the electrostatic interaction and 
size-based exclusion. Engineering the surface charge and 
the nanochannels according to the desalination needs 
without compromising on the water permeance, would 
lead to the ideal desalination membranes. Transport 
mechanisms in 2D nanomaterials is an attractive field of 
study, as there is lot more yet to be understood, through 
modelling and simulation studies aided by carefully 
designed experiments [89].

Large scale, cost-effective manufacturing of defect-
free BN nanomaterials with controlled dimensions, 
pore size and pore size distribution remains a challenge 
as quality of the material varies considerably across 
manufacturers [90]. The limited data on the environ-
mental and health risks of engineered nanoparticles, 
although much less than perceived, can hinder plant 
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operators and regulators from adopting nanomate-
rials-based products in treatment plants. Therefore, 
more studies must be conducted on the environmen-
tal impacts of each of these engineered nanomaterials, 
especially in the presence of other pollutants [91]. From 
the review of the ongoing research efforts on BN nano-
materials, it can be concluded that BN nanomaterials 
possess remarkable potential in leading the new gener-
ation of water purification membranes and adsorbents, 
and it is worth investing our time and effort to over-
come barriers to herald a new generation of architec-
tures for efficient water purification.
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