B. Itapu, A. Jayatissa, A review in graphene/polymer composites. Chem. Sci. Int. J. 23, 1 (2018)
Article
CAS
Google Scholar
S. Hales, E. Tokita, R. Neupane, U. Ghosh, B. Elder, D. Wirthlin, Y.L. Kong, 3D printed nanomaterial-based electronic. Biomed. Bioelectron. Devices Nanotechnol. 31, 172001 (2020)
CAS
Google Scholar
S. Sayyar, D.L. Officer, G.G. Wallace, Fabrication of 3D structures from graphene-based biocomposites. J. Mater. Chem. B 5, 3462 (2017)
Article
CAS
Google Scholar
R. Rajesh, Y. Ravichandran, A. Shanmugharaj, in Advances in Polymer Materials and Technology, ed. by A. Srinivasan, S. Bandyopadhyay. A Hariharasubramanian (CRC Press, Boca Raton, London, New York, 2016), pp. 657–690
Google Scholar
M. Silva, N.M. Alves, M.C. Paiva, Graphene-polymer Nanocomposites for biomedical applications. Polym. Adv. Technol. 29, 687 (2018)
Article
CAS
Google Scholar
A.M. Pinto, J. Cabral, D.A.P. Tanaka, A.M. Mendes, F.D. Magalhães, Effect of incorporation of graphene oxide and graphene Nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films. Polym. Int. 62, 33 (2013)
Article
CAS
Google Scholar
C. Valencia, C.H. Valencia, F. Zuluaga, M.E. Valencia, J.H. Mina, C.D. Grande-Tovar, Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 23, 2651 (2018)
Article
CAS
Google Scholar
J. Li, X. Liu, J.M. Crook, G.G. Wallace, Development of a porous 3D graphene-PDMS scaffold for improved Osseointegration. Colloids Surf. B Biointerfaces 159, 386 (2017)
Article
CAS
Google Scholar
S. Ghoshal, Polymer/carbon nanotubes (CNT) Nanocomposites processing using additive manufacturing (three-dimensional printing) technique: An overview. Fibers 5, 40 (2017)
Article
CAS
Google Scholar
M. Javaid, A. Haleem, Additive manufacturing applications in medical cases: A literature based review. Alexandria J. Med. 54, 411 (2018)
Article
Google Scholar
C. Culmone, G. Smit, P. Breedveld, Additive manufacturing of medical instruments: A state-of-the-art review. Addit. Manuf. 27, 461 (2019)
Google Scholar
R. Donate, M. Monzón, Z. Ortega, L. Wang, V. Ribeiro, D. Pestana, J.M. Oliveira, R.L. Reis, Comparison between calcium carbonate and β-Tricalcium phosphate as additives of 3D printed scaffolds with Polylactic acid matrix. J. Tissue Eng. Regen. Med. 14, 272 (2020)
Article
CAS
Google Scholar
J. Saroia, Y. Wang, Q. Wei, M. Lei, X. Li, Y. Guo, K. Zhang, A review on 3D printed matrix polymer composites: Its potential and future challenges. Int. J. Adv. Manuf. Technol. 106, 1695 (2020)
Article
Google Scholar
C.L. Ventola, Medical applications for 3D printing: Current and projected uses. P T 39, 704 (2014)
Google Scholar
E. Hull, W. Grove, M. Zhang, X. Song, Z.J. Pei, Effects of process variables on extrusion of carbon fiber reinforced ABS filament for additive manufacturing. Manuf. Sci. Eng. 1, 1 (2015)
Google Scholar
I.B. Dumitrescu, D. Lupuliasa, C.M. Drăgoi, A.C. Nicolae, A. Pop, G. Șaramet, D. Drăgănescu, The age of pharmaceutical 3D printing. Technol. Therapeut. Implications Additive Manufact. Farmacia 66, 365 (2018)
CAS
Google Scholar
H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 1, 101 (2019)
Article
Google Scholar
J. Liu, C. Yan, in 3D Printing, ed. by D. Cvetković. (IntechOpen, 2018), pp. 137–154. https://doi.org/10.5772/intechopen.74339
Chapter
Google Scholar
A. Alafaghani, A. Qattawi, B. Alrawi, A. Guzman, Experimental optimization of fused deposition modelling processing parameters: A design-for-manufacturing approach. Procedia Manuf. 10, 791 (2017)
Article
Google Scholar
S.F. Costa, F.M. Duarte, J.A. Covas, Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process. Virtual Phys. Prototyp. 10, 35 (2015)
Article
Google Scholar
D.D. Phan, Z.R. Swain, M.E. Mackay, Rheological and heat transfer effects in fused filament fabrication. J. Rheol. 62, 1097 (2018)
Article
CAS
Google Scholar
S.F. Costa, F.M. Duarte, J.A. Covas, Estimation of filament temperature and adhesion development in fused deposition techniques. J. Mater. Process. Technol. 245, 167 (2017)
Article
Google Scholar
D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79 (2016)
Article
CAS
Google Scholar
M Silva, Dissertation, University of Minho, 2016.
W. Xu, X. Wang, N. Sandler, S. Willför, C. Xu, Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663 (2018)
Article
CAS
Google Scholar
S. Nara, S. Chameettachal, S. Ghosh, Precise patterning of biopolymers and cells by direct write technique. Mater. Technol. 29, 1 (2014)
Article
CAS
Google Scholar
S. Ghosh, S.T. Parker, X. Wang, D.L. Kaplan, J.A. Lewis, Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv. Funct. Mater. 18, 1883 (2008)
Article
CAS
Google Scholar
B. Zhang, S.H. Chung, S. Barker, D. Craig, R.J. Narayan, J. Huang, Direct ink writing of polycaprolactone / polyethylene oxide based 3D constructs. Prog.Nat. Sci. Mater. Int (2020). https://doi.org/10.1016/j.pnsc.2020.10.001.
D.G. Karis, R.J. Ono, M. Zhang, A. Vora, D. Storti, M.A. Ganter, A. Nelson, Cross-Linkable multi-stimuli responsive hydrogel inks for direct-write 3D printing. Polym. Chem. 8, 4199 (2017)
Article
CAS
Google Scholar
L. Li, Q. Lin, M. Tang, A.J.E. Duncan, C. Ke, Advanced polymer designs for direct-ink-write 3D printing. Chem. A Eur. J. 25, 10768 (2019)
Article
CAS
Google Scholar
X. Wan, L. Luo, Y. Liu, J. Leng, Direct ink writing based 4D printing of materials and their applications. Adv. Sci. 7, 1 (2020)
Article
CAS
Google Scholar
P. Jiang, C. Yan, Y. Guo, X. Zhang, M. Cai, X. Jia, X. Wang, F. Zhou, Direct ink writing with high-strength and swelling-resistant biocompatible physically Crosslinked hydrogels. Biomater. Sci. 7, 1805 (2019)
Article
CAS
Google Scholar
L. Li, P. Zhang, Z. Zhang, Q. Lin, Y. Wu, A. Cheng, Y. Lin, C.M. Thompson, R.A. Smaldone, C. Ke, Hierarchical co-assembly enhanced direct ink writing. Angew. Chem. Int. Ed. 57, 5105 (2018)
Article
CAS
Google Scholar
B. Román-Manso, F.M. Figueiredo, B. Achiaga, R. Barea, D. Pérez-Coll, A. Morelos-Gómez, M. Terrones, M.I. Osendi, M. Belmonte, P. Miranzo, Electrically functional 3D-Architectured graphene/SiC composites. Carbon 100, 318 (2016)
Article
CAS
Google Scholar
N.W.S. Pinargote, A. Smirnov, N. Peretyagin, A. Seleznev, P. Peretyagin, Direct ink writing technology (3d printing) of graphene-based ceramic Nanocomposites: A review. Nanomaterials 10, 1 (2020)
Google Scholar
X. You, J. Yang, Q. Feng, K. Huang, H. Zhou, J. Hu, S. Dong, Three-dimensional graphene-based materials by direct ink writing method for lightweight application. Int. J. Light. Mater. Manuf. 1, 96 (2018)
Google Scholar
A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359 (2016)
Article
CAS
Google Scholar
S. Singh, S. Ramakrishna, F. Berto, 3D printing of polymer composites: A short review. Mater. Des. Process. Commun. 2, 1 (2020)
Google Scholar
X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 110, 442 (2017)
Article
CAS
Google Scholar
S.Y. Chin, V. Dikshit, B.M. Priyadarshini, Y. Zhang, Powder-based 3D printing for the fabrication of device with micro and Mesoscale features. Micromachines 11, 29 (2020)
Article
Google Scholar
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2, 041101 (2015)
Article
CAS
Google Scholar
A. Lamikiz, J.A. Sánchez, L.N.L. de Lacalle, J.L. Arana, Laser polishing of parts built up by selective laser sintering. Int. J. Mach. Tool Manuf. 47, 2040 (2007)
Article
Google Scholar
K. Deshmukh, A. Muzaffar, T. Kovářík, T. Křenek, M.B. Ahamed, S.K.K. Pasha, in 3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges, ed. by K. K. Sadasivuni, K. Deshmukh, M. A. Almaadeed. (Elsevier, Amsterdam, 2020), pp. 527–560
Chapter
Google Scholar
J.Z. Gul, M. Sajid, M.M. Rehman, G.U. Siddiqui, I. Shah, K.H. Kim, J.W. Lee, K.H. Choi, 3D printing for soft robotics–a review. Sci. Technol. Adv. Mater. 19, 243 (2018)
Article
CAS
Google Scholar
J. Gardan, Additive manufacturing technologies: State of the art and trends. Int. J. Prod. Res. 54, 3118 (2016)
Article
Google Scholar
P. Ahangar, M.E. Cooke, M.H. Weber, D.H. Rosenzweig, Current biomedical applications of 3D printing and additive manufacturing. Appl. Sci. 9, 1713 (2019)
Article
CAS
Google Scholar
U.K. Sur, Graphene: A rising star on the horizon of materials science. Int. J. Electrochem. 2012, 1 (2012)
Article
CAS
Google Scholar
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010)
Article
CAS
Google Scholar
J. Texter, in Graphene Science Handbook: Electrical and Optical Properties, ed. by M. Aliofkhazraei, N. Ali, W. Milne, C. Ozkan, S. Mitura, J. Gervasoni. (CRC Press, Boca Raton, 2016), pp. 315–341
Google Scholar
E. Beyou, S. Akbar, P. Chaumont, P. Cassagnau, in Syntheses and Applications of Carbon Nanotubes and their Composites, ed. by S. Suzuki. (IntechOpen, 2013), pp. 77–115. https://doi.org/10.5772/50710
Chapter
Google Scholar
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008)
Article
CAS
Google Scholar
R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638 (2011)
Article
CAS
Google Scholar
W. Du, X. Jiang, L. Zhu, From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 1, 10592 (2013)
Article
CAS
Google Scholar
M. Shtein, I. Pri-Bar, M. Varenik, O. Regev, Characterization of graphene-Nanoplatelets structure via Thermogravimetry. Anal. Chem. 87, 4076 (2015)
Article
CAS
Google Scholar
P. Cataldi, A. Athanassiou, I.S. Bayer, Graphene Nanoplatelets-based advanced materials and recent Progress in sustainable applications. Appl. Sci. 8, 1438 (2018)
Article
CAS
Google Scholar
A.K. Rasheed, M. Khalid, W. Rashmi, T.C.S.M. Gupta, A. Chan, Graphene based Nanofluids and Nanolubricants - review of recent developments. Renew. Sustain. Energy Rev. 63, 346 (2016)
Article
CAS
Google Scholar
M.R. Safaei, H.R. Goshayeshi, I. Chaer, Solar still efficiency enhancement by using graphene oxide/paraffin Nano-PCM. Energies 12, 1 (2019)
Article
CAS
Google Scholar
B.L. Dasari, J.M. Nouri, D. Brabazon, S. Naher, Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy 140, 766 (2017)
Article
CAS
Google Scholar
A. Caradonna, C. Badini, E. Padovano, M. Pietroluongo, Electrical and thermal conductivity of epoxy-carbon filler composites processed by calendaring. Materials 12, 1522 (2019)
Article
CAS
Google Scholar
F. Perreault, A. Fonseca, D. Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861 (2015)
Article
CAS
Google Scholar
G. Yuvaraj, V. Bhuvaneswari, G. Vignesh, L. Vairamuthu, Mechanical Properties of Aluminium Alloy AA2219 Reinforced with Graphite (Paper presented at the First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), Coimbatore, 2017)
Book
Google Scholar
M.Y. Shen, T.Y. Chang, T.H. Hsieh, Y.L. Li, C.L. Chiang, H. Yang, M.C. Yip, Mechanical properties and tensile fatigue of graphene Nanoplatelets reinforced polymer Nanocomposites. J. Nanomater. 2013, 1 (2013)
Google Scholar
Z. Zhen, H. Zhu, in Graphene: Fabrication, Characterizations, Properties and Applications, ed. by H. Zhu, Z. Xu, D. Xie, Y. Fang. (Elsevier, Amsterdam, 2017), pp. 1–12
Google Scholar
Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Graphene: A versatile Nanoplatform for biomedical applications. Nanoscale 4, 3833 (2012)
Article
CAS
Google Scholar
A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: A review. Colloids Surf. B Biointerfaces 111, 188 (2013)
Article
CAS
Google Scholar
B. Zhang, Y. Wang, G. Zhai, Biomedical applications of the graphene-based materials. Mater. Sci. Eng. C 61, 953 (2016)
Article
CAS
Google Scholar
Y. Qu, F. He, C. Yu, X. Liang, D. Liang, L. Ma, Q. Zhang, J. Lv, J. Wu, Advances on graphene-based nanomaterials for biomedical applications. Mater. Sci. Eng. C 90, 764 (2018)
Article
CAS
Google Scholar
S. Zhang, K. Yang, L. Feng, Z. Liu, In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49, 4040 (2011)
Article
CAS
Google Scholar
S. Gurunathan, J.H. Kim, Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomedicine 11, 1927 (2016)
Article
CAS
Google Scholar
O. Erol, I. Uyan, M. Hatip, C. Yilmaz, A.B. Tekinay, M.O. Guler, Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine 14, 2433 (2018)
Article
CAS
Google Scholar
S. Syama, P.V. Mohanan, Comprehensive application of graphene: Emphasis on biomedical concerns. Nano-Micro Lett. 11, 6 (2019)
Article
CAS
Google Scholar
S. Syama, P.V. Mohanan, Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 86, 546 (2016)
Article
CAS
Google Scholar
C. Wei, Z. Liu, F. Jiang, B. Zeng, M. Huang, D. Yu, Cellular Behaviours of bone marrow-derived mesenchymal stem cells towards pristine graphene oxide Nanosheets. Cell Prolif. 50, 1 (2017)
Article
CAS
Google Scholar
X. Zhang, C. Wei, Y. Li, Y. Li, G. Chen, Y. He, C. Yi, C. Wang, D. Yu, Dose-dependent cytotoxicity induced by pristine graphene oxide Nanosheets for potential bone tissue regeneration. J. Biomed. Mater. Res. A 108, 614 (2020)
Article
CAS
Google Scholar
L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, L. Shao, Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)
Article
CAS
Google Scholar
Y.K. Kim, M.H. Kim, D.H. Min, Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem. Commun. 47, 3195 (2011)
Article
CAS
Google Scholar
G.Y. Chen, D.W.P. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A Graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33, 418 (2012)
Article
CAS
Google Scholar
G. Wang, F. Qian, C.W. Saltikov, Y. Jiao, Y. Li, Microbial reduction of graphene oxide by Shewanella. Nano Res. 4, 563 (2011)
Article
CAS
Google Scholar
W. Miao, G. Shim, C.M. Kang, S. Lee, Y.S. Choe, H.G. Choi, Y.K. Oh, Cholesteryl hyaluronic acid-coated, reduced Graphene oxide Nanosheets for anti-cancer drug delivery. Biomaterials 34, 9638 (2013)
Article
CAS
Google Scholar
S. Shi, K. Yang, H. Hong, F. Chen, H.F. Valdovinos, S. Goel, T.E. Barnhart, Z. Liu, W. Cai, V.E.G.F.R. Targeting, Leads to significantly enhanced tumor uptake of Nanographene oxide in vivo. Biomaterials 39, 39 (2015)
Article
CAS
Google Scholar
S. Gurunathan, J.W. Han, V. Eppakayala, A.A. Dayem, D.N. Kwon, J.H. Kim, Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells. Nanoscale Res. Lett. 8, 1 (2013)
Article
CAS
Google Scholar
Y. Zhang, S.F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A.S. Biris, Cytotoxicity effects of graphene and Single-Wall carbon nanotubes in neural Phaeochromocytoma-derived Pc12 cells. ACS Nano 4, 3181 (2010)
Article
CAS
Google Scholar
M.C. Duch, G.R.S. Budinger, Y.T. Liang, S. Soberanes, D. Urich, S.E. Chiarella, L.A. Campochiaro, A. Gonzalez, N.S. Chandel, M.C. Hersam, G.M. Mutlu, Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11, 5201 (2011)
Article
CAS
Google Scholar
B. Li, X.Y. Zhang, J.Z. Yang, Y.J. Zhang, W.X. Li, C.H. Fan, Q. Huang, Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomedicine 9, 4697 (2014)
Article
CAS
Google Scholar
A.F. Rodrigues, L. Newman, D.A. Jasim, I.A. Vacchi, C. Ménard-Moyon, L.E. Crica, A. Bianco, K. Kostarelos, C. Bussy, Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Arch. Toxicol. 92, 3359 (2018)
Article
CAS
Google Scholar
A. Schinwald, F.A. Murphy, A. Jones, W. MacNee, K. Donaldson, Graphene-based Nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6, 736 (2012)
Article
CAS
Google Scholar
X. Wang, R. Podila, J.H. Shannahan, A.M. Rao, J.M. Brown, Intravenously delivered graphene Nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 Axis. Int. J. Nanomedicine 8, 1733 (2013)
Google Scholar
J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer Nanocomposites. Polymer 52, 1 (2011)
Article
CAS
Google Scholar
A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, in Synthesis of Inorganic Nanomaterials, ed. by S. M. Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, S. Thomas. Methods for synthesis of nanoparticles and fabrication of Nanocomposites (WoodheadPublishing Company, Sawston, 2018), pp. 121–139
Chapter
Google Scholar
A. Mirabedini, A. Ang, M. Nikzad, B. Fox, K.T. Lau, N. Hameed, Evolving strategies for producing multiscale Graphene-enhanced fiber-reinforced polymer composites for smart structural applications. Adv. Sci. 1903501 (2020). https://doi.org/10.1002/advs.201903501
V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178 (2011)
Article
CAS
Google Scholar
L. Tang, L. Zhao, in Advanced Composite Materials: Properties and Applications, ed. by E. Bafekrpour. L guan (De Gruyter, Warsaw, 2017), pp. 349–419
Chapter
Google Scholar
K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, in Biopolymer Composites in Electronics, ed. by K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, M. A. Al Maadeed. PR Bhagat (Elsevier Inc., Amsterdam, 2018), pp. 27–128
Google Scholar
K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer Nanocomposites for structural and functional applications. Prog. Polym. Sci. 39, 1934 (2014)
Article
CAS
Google Scholar
D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, C. Yan, Recent advances in fabrication and characterization of graphene-polymer Nanocomposites. Graphene 1, 30 (2012)
Article
CAS
Google Scholar
H. Kim, Y. Miura, C.W. MacOsko, Graphene/polyurethane Nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441 (2010)
Article
CAS
Google Scholar
J. Wang, Y. Liu, Z. Fan, W. Wang, B. Wang, Z. Guo, Ink-based 3D printing Technologies for Graphene-Based Materials: A review. Adv. Compos. Hybrid Mater. 2, 1 (2019)
Article
CAS
Google Scholar
D.R. Fonseca, R. Sobreiro-Almeida, P.C. Sol, N.M. Neves, Development of non-orthogonal 3D-printed scaffolds to enhance their Osteogenic performance. Biomater. Sci. 6, 1569 (2018)
Article
CAS
Google Scholar
L. Moroni, T. Boland, J.A. Burdick, C. De Maria, B. Derby, G. Forgacs, J. Groll, Q. Li, J. Malda, V.A. Mironov, C. Mota, M. Nakamura, W. Shu, S. Takeuchi, T.B.F. Woodfield, T. Xu, J.J. Yoo, G. Vozzi, Biofabrication: A guide to technology and terminology. Trends Biotechnol. 36, 384 (2018)
Article
CAS
Google Scholar
J.B. Costa, J. Silva-Correia, R.L. Reis, J.M. Oliveira, Recent advances on 3D printing of patient-specific implants for fibrocartilage tissue regeneration. J. 3D Print. Med 2, 129 (2018)
Article
CAS
Google Scholar
B. Costa, J. Park, A.M. Jorgensen, J. Silva-Correia, R.L. Reis, J.M. Oliveira, A. Atala, J.J. Yoo, S.J. Lee, 3D bioprinted highly elastic hybrid constructs for advanced Fibrocartilaginous tissue regeneration. Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.0c03556
S.J. Hollister, Porous scaffold Design for Tissue Engineering. Nat. Mater. 4, 518 (2006)
Article
CAS
Google Scholar
H. Belaid, S. Nagarajan, C. Teyssier, C. Barou, J. Barés, S. Balme, H. Garay, V. Huon, D. Cornu, V. Cavaillès, M. Bechelany, Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater. Sci. Eng. C 110, 110595 (2020)
Article
CAS
Google Scholar
S. Sayyar, M. Bjorninen, S. Haimi, S. Miettinen, K. Gilmore, D. Grijpma, G. Wallace, U.V. Cross-Linkable, Graphene/poly (Trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds. ACS Appl. Mater. Interfaces 8, 31916 (2016)
Article
CAS
Google Scholar
E.M. Gonçalves, F.J. Oliveira, R.F. Silva, M.A. Neto, M.H. Fernandes, M. Amaral, M. Vallet-Regí, M. Vila, Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J. Biomed. Mater. Res. B Appl. Biomater. 104, 1210 (2016)
Article
CAS
Google Scholar
W. Wang, J.R.P. Junior, P.R.L. Nalesso, D. Musson, J. Cornish, F. Mendonça, G.F. Caetano, P. Bártolo, Engineered 3D printed poly(ɛ-Caprolactone)/graphene scaffolds for bone tissue engineering. Mater. Sci. Eng. C 100, 759 (2019)
Article
CAS
Google Scholar
A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636 (2015)
Article
CAS
Google Scholar
S. Sayyar, E. Murray, B.C. Thompson, J. Chung, D.L. Officer, S. Gambhir, G.M. Spinks, G.G. Wallace, Processable conducting graphene/chitosan hydrogels for tissue engineering. J. Mater. Chem. B 3, 481 (2015)
Article
CAS
Google Scholar
X. Zhou, M. Nowicki, H. Cui, W. Zhu, X. Fang, S. Miao, S.J. Lee, M. Keidar, L.G. Zhang, 3D bioprinted graphene oxide-incorporated matrix for promoting Chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon 116, 615 (2017)
Article
CAS
Google Scholar
P. Feng, J. Jia, S. Peng, W. Yang, S. Bin, C. Shuai, Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration. Virtual Phys. Prototyp. 15, 211 (2020)
Article
Google Scholar
C. Angulo-Pineda, K. Srirussamee, P. Palma, V.M. Fuenzalida, S.H. Cartmell, H. Palza, Electroactive 3D printed scaffolds based on percolated composites of Polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials 10, 9 (2020)
Article
CAS
Google Scholar
Y. Zhang, D. Zhai, M. Xu, Q. Yao, H. Zhu, J. Chang, C. Wu, 3D-printed bioceramic scaffolds with antibacterial and Osteogenic activity. Biofabrication 9, 025037 (2017)
Article
CAS
Google Scholar
C.S.D. Cabral, S.P. Miguel, D. de Melo-Diogo, R.O. Louro, I.J. Correia, Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon 146, 513 (2019)
Article
CAS
Google Scholar
S.T. Bendtsen, S.P. Quinnell, M. Wei, Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J. Biomed. Mater. Res. A 105, 1457 (2017)
Article
CAS
Google Scholar
Y. Zhang, C. Wang, L. Fu, S. Ye, M. Wang, Y. Zhou, Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and Osteogenic peptide by cryogenic 3D printing for repairing critical-sized bone defect. Molecules 24, 1669 (2019)
Article
CAS
Google Scholar
G.F. Caetano, W. Wang, W.H. Chiang, G. Cooper, C. Diver, J.J. Blaker, M.A. Frade, P. Bártolo, 3D-printed poly(ϵ-Caprolactone)/graphene scaffolds activated with P1-latex protein for bone regeneration, 3D print. Addit. Manuf. 5, 127 (2018)
Google Scholar
W. Wang, G. Caetano, W.S. Ambler, J.J. Blaker, M.A. Frade, P. Mandal, C. Diver, P. Bártolo, Enhancing the Hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials (Basel) 9, 992 (2016)
Article
CAS
Google Scholar
I. Rajzer, A. Kurowska, A. Jabłoński, R. Kwiatkowski, W. Piekarczyk, M.B. Hajduga, J. Kopeć, M. Sidzina, E. Menaszek, Scaffolds modified with graphene as future implants for nasal cartilage. J. Mater. Sci. 55, 4030 (2020)
Article
CAS
Google Scholar
J.M. Unagolla, A.C. Jayasuriya, Enhanced cell functions on graphene oxide incorporated 3D printed Polycaprolactone scaffolds. Mater. Sci. Eng. C 102, 1 (2019)
Article
CAS
Google Scholar
Q. Chen, J.D. Mangadlao, J. Wallat, A. De Leon, J.K. Pokorski, R.C. Advincula, 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide Nanocomposites: Anisotropic properties. ACS Appl. Mater. Interfaces 9, 4015 (2017)
Article
CAS
Google Scholar
F. Olate-Moya, L. Arens, M. Wilhelm, M.A. Mateos-Timoneda, E. Engel, H. Palza, Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl. Mater. Interfaces 12, 4343 (2020)
Article
CAS
Google Scholar
Z. Feng, Y. Li, L. Hao, Y. Yang, T. Tang, D. Tang, W. Xiong, Graphene-reinforced biodegradable resin composites for Stereolithographic 3D printing of bone structure scaffolds. J. Nanomater. 2019, 13 (2019)
Article
CAS
Google Scholar
C. Shuai, P. Feng, C. Gao, X. Shuai, T. Xiao, S. Peng, Graphene oxide reinforced poly (vinyl alcohol): Nanocomposite scaffolds for tissue engineering applications. RSC Adv. 5, 25416 (2015)
Article
CAS
Google Scholar
M. Sharafeldin, A. Jones, J.F. Rusling, 3D-printed biosensor arrays for medical diagnostics. Micromachines 9, 1 (2018)
Article
Google Scholar
C.L. Manzanares, F.N. Palenzuela, P. Krupička, Z. Sofer, M. Pumera, 3D-printed graphene/Polylactic acid electrodes promise high sensitivity in Electroanalysis. Anal. Chem. 90, 5753 (2018)
Article
CAS
Google Scholar
R.M. Cardoso, P.R.L. Silva, A.P. Lima, D.P. Rocha, T.C. Oliveira, T.M. do Prado, E.L. Fava, O. Fatibello-Filho, E.M. Richter, R.A.A. Muñoz, 3D-printed graphene/Polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids, sensors actuators. B Chem. 307, 127621 (2020)
Google Scholar
A.M.L. Marzo, C.C. Mayorga-Martinez, M. Pumera, 3D-printed graphene direct electron transfer enzyme biosensors. Biosens. Bioelectron. 151, 111980 (2020)
Article
CAS
Google Scholar
S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 7, 1 (2012)
Article
Google Scholar
K. Kadimisetty, I.M. Mosa, S. Malla, J.E. Satterwhite-Warden, T.M. Kuhns, R.C. Faria, N.H. Lee, J.F. Rusling, 3D-printed Supercapacitor-powered Electrochemiluminescent protein Immunoarray. Biosens. Bioelectron. 77, 188 (2016)
Article
CAS
Google Scholar